

PQRM5300 33 Ux Ix xx xx (PS)

Three-phase Power Meter

Instruction manual

CE

O DATCON

Contents

1. About this document

1.1. Function	5
1.2. Target group	5
1.3. Symbolism used	5

2. For your safety

2.1. Authorized personnel	6
2.2. Appropriate use	
2.3. Warning about misuse	
2.4. General safety instructions	
2.5. CE conformity	
2.6. Environmental instructions	

3. Product description

3.1. Delivery configuration	7
3.2. Type designation	
3.3. Operating principle	8
3.4. Display, Indicators, keyboard	
3.5. Storage and transport	

4. Mounting

4.1.	General instructions	12
4.2.	Main dimensions of the instrument	12
4.3.	Mounting	13

5. Connecting

5.1. Preparing the connection	15
5.2. Connecting the measuring inputs to power network. Three	
phase measurement with neutral conductor. (3 phase, 4 wire, 3	
measuring)	16
5.3. Connecting the measuring inputs to power network. Three	
phase measurement without neutral conductor. (3 phase, 3 wire,	3
measuring)	17
5.4. Connecting the measuring inputs trough transformer to powe	er
network. Three phase measurement with neutral conductor. (3	
phase, 4 wire, 3 measuring)	18
· · · · · · · · · · · · · · · · · · ·	

5.5. Connecting the measuring inputs to medium voltage pow network. Three phase measurement without neutral conducte phase, 3 wire, 3 measuring)	or. (3 19
5.6. Connecting the measuring inputs to symmetrical three-ph power network with neutral conductor. (3 phase, 4 wire, 1	lase
measuring)	20
5.7. Connecting the measuring inputs to symmetrical three-prover network without neutral conductor. (3 phase, 3 wire, 1	lase
measuring)	21
5.8. Aron mode (3 phase, 3 wire, 2 measuring)	22
5.9. Connecting the measuring inputs to three-phase power	
network trough three-phase voltage transformers without com	
connection point (3 phase, 3 wire, 3 measuring, 3fmv)	23
5.10. Connecting the digital outputs	24
5.11. Connecting to MODBUS RS485 network	26
5.12. Connecting to ETHERNET network	27
5.13. Connecting the analog output to signal processing unit.	
5.14. Connecting the power supply	
6. Setting – up	

ODATCON

6.1. First steps	
6.2. Main menu, Measured data	31
6.3. Main menu, Energy menu	
6.4. Main menu, Harmonics menu	
6.5. Main menu, Errors menu	
6.6. Main menu, Power limit	
6.7. Main menu, User settings menu	35
6.8. Main menu, Configurations menu	35

7. Settings

41

ODATCON

7.3. Configurations menu	42
7.3.1 Measure input settings	43
7.3.1.1. Measure configuration	43
7.3.1.2. Voltage Transformers (VT) and Current Transformers	
(CT) ratio settings	45
7.3.1.3. Phase lag of CT settings	46
7.3.1.4. Sampling time setting	47
7.3.1.5. Current threshold	48
7.4. Setting the optional modules	49
7.4.1. Digital inputs and outputs settings	49
7.4.1.1. Digital output, Energy pulse output settings	50
7.4.1.2. Digital output, Energy sign output settings	52
7.4.1.3. Digital output, Limit output settings	53
7.4.1.4. Digital output, Alarm output settings	
7.4.1.5. Digital output, Demand control function setting	
7.4.1.6. Digital output, digital output test	
7.4.2. Analogue output settings	
7.4.2.1. Analogue output testing	
7.4.3. Communication interface	
7.4.3.1. MODBUS RS485 interface setting	
7.4.3.2. MODBUS TCP Ethernet interface setting	
7.4.3.3 MODBUS registers format	
7.5. Error LED settings	
7.6. Clear errors	
7.7. Clear the Energyregisters	
7.8. Change the password	82

8. Fault rectification

8.1. Fault finding	83
8.2. Repairing	

9. Dismounting

9.1. Dismounting procedure	84
9.2. Disposal	85

10. Appendix

10.1. Technical specification	86
10.2. MODBUS RS485 bus topology	
10.3. Ethernet network topology	

1. About this document

1.1. Function

This operating instructions manual has all the information you need for quick set-up and safe operation of PQRM5300 33 Ux Ix xx xx (PS). Please read this manual before you start setup.

1.2. Target group

This operating instructions manual is directed to trained personnel. The contents of this manual should be made available to these personnel and put into practice by them.

1.3. Symbolism used

Information, tip, note This symbol indicates helpful additional information.

Caution, warning, danger

This symbol informs you of a dangerous situation that could occur. Ignoring this cautionary note can impair the person and/or the instrument.

List

The dot set in front indicates a list with no implied sequence.

Action

This arrow indicates a single action.

Sequence

Numbers set in front indicate successive steps in a procedure.

20201120-V1

2. For your safety

2.1. Authorized personnel

All operations described in this operating instructions manual must be carried out only by trained and authorized specialist personnel. For safety and warranty reasons, any internal work on the instruments must be carried out only by DATCON personnel.

2.2. Appropriate use

The PQRM5300 33 Ux Ix xx xx (PS) is a Three-phase Power Meter. Detailed information on the application range is available in chapter **3. Product description**.

2.3. Warning about misuse

Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, or damage to system components through incorrect mounting or adjustment.

2.4. General safety instructions

The PQRM5300 33 Ux Ix xx xx (PS) is a high-tech instrument requiring the strict observance of standard regulations and guidelines.

The user must take note of the safety instructions in this operating instructions manual, the country-specific installation standards as well as all prevailing safety regulations and accident prevention rules.

2.5. CE conformity

The PQRM5300 33 Ux Ix xx xx (PS) is in conformity with the provisions of the following standards: MSZ EN 61010-1 (safety) MSZ EN 61326-1 (EMC)

2.6. Environmental instructions

Protection of the environment is one of our most important duties.

Please take note of the instructions written in the following chapters:

- Chapter 3.5. Storage and transport
- Chapter 9.2. Disposal

3. Product description

3.1. Delivery configuration

Delivered items

The scope of delivery encompasses:

- PQRM5300 33 Ux Ix xx xx (PS)
- documentation: this operating instructions certification warranty

3.2. Type designation

POF	RM!	5300 33			OPTION	OPTION	*	
						2IA / 2I5A	RS4	ETH
					DO			
					dual-channel impulse output	dual-channel active output 0-20 mA / 4-20 mA / 0-5 mA / 1-5 mA	RS485 MODBUS	Ethernet MODBUS
			1	0-1 A	• •	• •	• •	• •
	INPUT		15	0-5 A	• •	• •	• •	• •
	INP	U125		0-125 V	• •	• •	• •	• •
		U250		0-250 V	• •	• •	• •	• •
PQF	RM!	5300 33 🗌 🗌				24 VDC POWER SUPPLY		
					PS	230 V AC/DC POWER SUP	PLY	
					* only one opt	tion* at the same time		

Area of application

3.3. Operating principle

A PQRM5300 33 Ux Ix xx xx (PS) Three-phase Power Meter measure the characteristic for three-phase network system. The measured values are displayed on a graphic display, and they are forward for processing units. Programming and adjustment are performed via the front panel membrane keypad.

The current inputs of the instrument are isolated from the network with wideband current transformers. The voltage inputs of the instrument are galvanic connection in the network. The PQRM5300 33 Ux Ix xx xx (PS) Three-phase Power Meter has many measurement configurations.

Options:

• Two (4-20 mA / 0-20 mA) or (0-5 mA / 1-5 mA) galvanic isolated, configurable, scalable analog output.

• RS485 galvanic isolated communication output with MODBUS RTU / ASCII slave protocol. 32 instruments can be connected to the PLC or to the computer.

• ETHERNET galvanic isolated communication output with MODBUS TCP protocol.

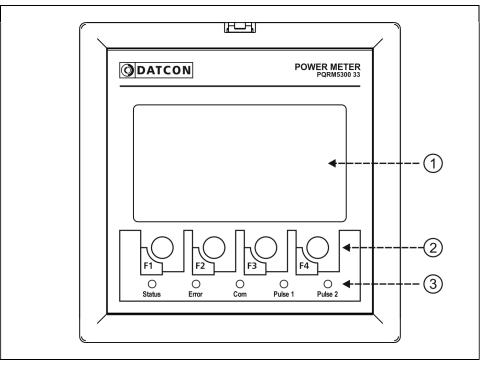
One options can be installed (dual analog output or communication output) at the same time.

Operating principleThe signals of voltage divider output and of current-
transformer output through the signal conditioner and
protection circuits are led to the 16 bit A/D converter inputs.
The digitalized signals are processed by the instruments
microcontroller. The calculated energy values (+E, -E, +RE,
-RE) and the settings are stored an EEPROM for an
unlimited period of time. The switched-mode power supply
of the instrument produces two galvanic isolated output
voltages: one for the instrument circuitry and one for the
installed options.

Power supply	The instrument has two power su	pply version:
	PQRM5300 33 Ux Ix xx xx	24 VDC
	PQRM5300 33 Ux Ix xx xx PS:	230 V AC/DC

Measuring parameters: Po

Per phase:


- U_{eff} : Measured voltage of L1, L2, L3 phase [V]
- I_{eff} : Measured current of L1, L2, L3 phase [A]
- P: Measured active power of L1, L2, L3 phase [W]
- Q: Measured reactive power of L1, L2, L3 phase [VAr]

DATCON

- S: Measured apparent power of L1, L2, L3 phase [VA]
- PF: Calculated power factor of L1, L2, L3 phase
- f: Measured network freuqvency [Hz]
- THDU: Calculated total harmonic distortion of phase voltage (up to 19. harmonic) [%]
- THDI: Calculated total harmonic distortion of phase current (up to 19. harmonic) [%]
- +E: Measured values of consument active energy [Wh]
- -E: Measured values of produced active energy [Wh]
- +RE: Measured values of inductiv reactive energy [VArh]
- -RE: Measured values of capacitiv reactive energy [VArh]
- ΣP: Active power of three phase network [W]
- ΣQ: Reactive power of three phase network [Var]
- ΣS: Apparent power of three phase network [VA]
- ΣPF:Calculated power factor of three phase network
- Σ +E: Measured consument active energy of three phase netwrok [Wh]
- Σ-E: Measured produced active energy of three phase netwrok [Wh]
- +RE: Measured inductive reactive energy of three phase netwrok [VArh]
- -RE: Measured capacitiv reactive energy of three phase netwrok [VArh]
- U_{12} , U_{23} , U_{31} , : Messaured voltage between phase to phase
- ρ_{12} : Meassured phase angle between of L1 and L2 phase
- ρ_{13} : Meassured phase angle between of L1 and L3 phase

The following figure shows the instruments front:

DATCON

1. Monochrome graphic LCD to displaying the measured value, menu points and the error messages.

2. Membrane keypad for navigation in the menu system, selection for the menu items and entering numeric values (F1-F4)

3. Indicators:

"Status" green indicator for indicating that device is ready. "Error" red indicator for indicating that a kind of error occurred.

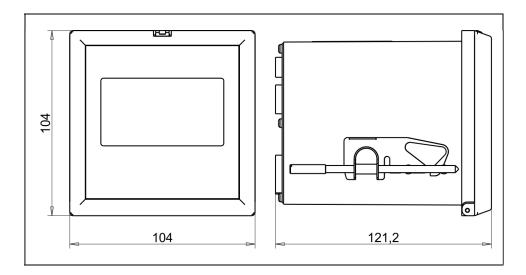
"Com" yellow indicator for indicating that a successful data exchange has granted through the communication output (MODBUS),

"Pulse x" yellow indicator for indicating that pulse output is in "on-state" (lights = output is close).

3.5. Storage and transport

This instrument should be stored and transport in places whose climatic conditions are in accordance with chapter **10.1. Technical specification** as described under the title: Environmental conditions.

The packaging of instrument consist of environmentfriendly, recyclable cardboard is used to protect the instrument against the impacts of normal stresses occurring during transportation. The corrugated cardboard box is made from environment-friendly, recyclable paper. The inner protective material is nylon, which should be disposed of via specialized recycling companies.


4. Mounting

4.1. General instructions

Use the enclosed seal between the instrument and the panel when mounting the instrument to assure IP 54 from the front. The instrument should be installed in a cabinet with sufficient IP protection, where the operating conditions are in accordance with chapter **10.1. Technical specification**, as described under the title: Operating conditions.

Select a mounting position you can easily read the display reach for mounting and connecting the instrument and that minimizes the hazard of water, dust or dump getting into the instrument.

4.2. Main dimensions of the instrument

Mounting position

4.3. Mounting

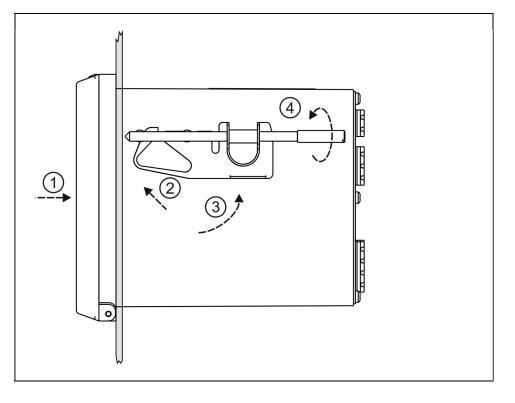
(thickness: 2 - 5 mm)

Preparatory steps

Dimensions of panel cutout

The following figure shows the dimensions of panel cut-out:

1. Cut-out the panel according to the figure shows above.



The cut-out needs special tools, it must be carried out by trained specialist personnel.

Before fitting the instrument into the panel cut-out it is recommended to exercise the using of mounting clamps. Put the instrument onto a table and follow the steps (from step 2.) written under the figure:

Mounting with the mounting clamps

Please do not exercise forces higher than necessary, as it may cause damages to the clamp.

- 1. Pulsh in the instrument to the panel.
- 2. Insert the mounting clamp into the front rivet.

(according the figure **Step (2)**)

3. Rotate the mounting clamp in the direction of the arrow until it snaps into the groove in the rear mounting rivet. (according the figure **Step (3**)

4. Screwing the fixing screw (clockwise) according the figure **Step (4)**.

5. Do the above procedure with the other mounting clamp also (**Step (1) - Step (4)**).

Check the hold of the instrument in the panel cut-out by moving on it firmly.

5. Connecting

5.1. Preparing the connection

Always observe the following safety instructions:

- The connection must be carried out by trained and authorized personnel only
- Connect only in the complete absence of supply voltage
- Take note the data concerning on the overcurrent protection in installation
- Use only a screwdriver with appropriate head

Take note the suitability of the connecting cable (wire cross-section, insulation, etc.).

The cross-section of the connecting wires specified in the following table

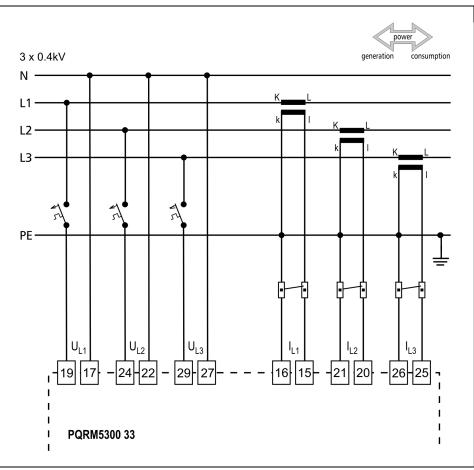
connector	wire cross-section
Main inputs	0,75–1,5 mm ²
Voltage and current measurement	2,5–4,5 mm ²
inputs Analogue outputs Communication outputs Pulse outputs	0,25–0,5 mm ² 0,35–0,5 mm ² 0,35–0,5 mm ²

You may use either solid conductor or flexible conductor. In case of using flexible conductor use crimped wire end. Strip approx. 8 mm insulation.

It's an important rule that the power cables and signal cables should lead on a separate way.

Select and prepare connection cable

Wiring plan, connecting the voltage and current inputs to power network.


The terminal "k" of CT you

have to connecting to

earth!

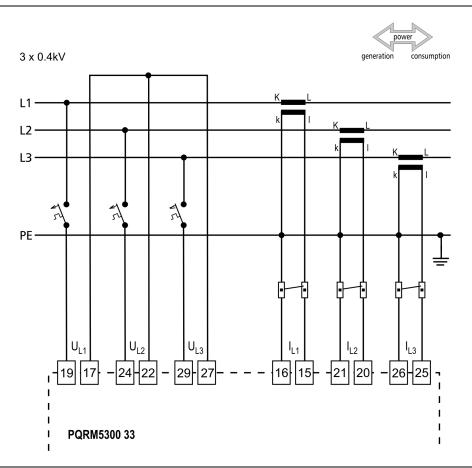
5.2. Connecting the measuring inputs to power network. Three phase measurement with neutral conductor. (3 phase, 4 wire, 3 measuring)

The following figure shows the wiring plan, connecting the instrument to low voltage power network with neutral conductor.

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.


4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the connections

Wiring plan, connecting the voltage and current

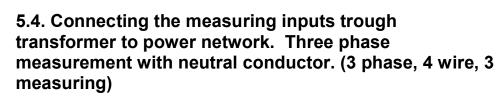
5.3. Connecting the measuring inputs to power network.Three phase measurement without neutral conductor.(3 phase, 3 wire, 3 measuring)

The following figure shows the wiring plan, connecting the instrument to low voltage power network without neutral conductor.

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

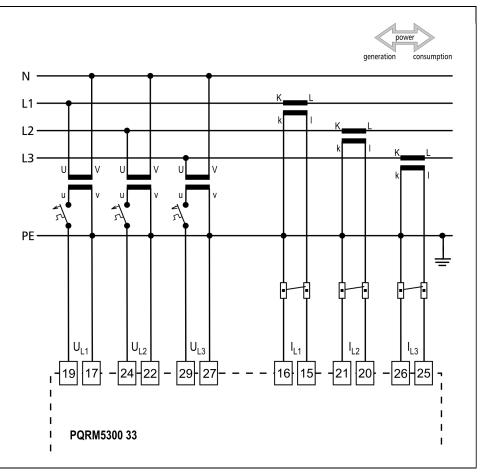

4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the connections

Check if the cables are connected properly (have you connected all the cables, have you connected to the right place, do not the cable-ends touch each other).

inputs to power network.

The terminal "k" of CT you have to connecting to earth!


The following figure shows the wiring plan, connecting the instrument to medium voltage power network with neutral conductor.

Wiring plan, connecting the voltage and current inputs to power network.

DATCON

The terminal "k" of CT and terminal "v" of VT you have to connecting to earth!

1. Loosen terminal screws.

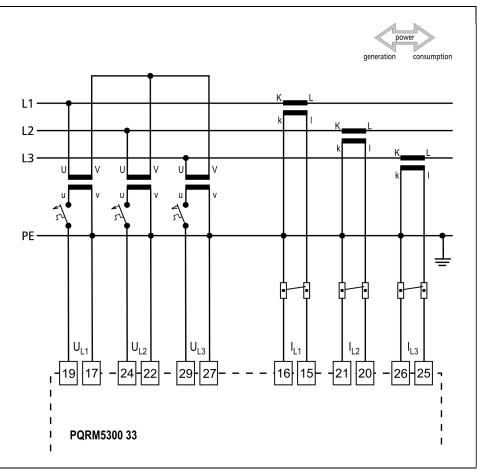
2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the connections

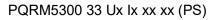
5.5. Connecting the measuring inputs to medium voltage power network. Three phase measurement without neutral conductor. (3 phase, 3 wire, 3 measuring)


ODATCON

The following figure shows the wiring plan, connecting the instrument to medium voltage power network without neutral conductor

Wiring plan, connecting the voltage and current inputs to power network.

The terminal "k" of CT and terminal "v" of VT you have to connecting to earth!


1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

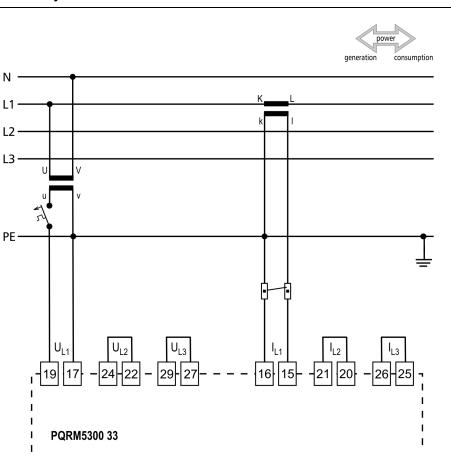
4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the connections

5.6. Connecting the measuring inputs to symmetrical three-phase power network with neutral conductor. (3 phase, 4 wire, 1 measuring)

The following figure shows the wiring plan to symmetrical three-phase network. Measuring only one phase. The three phase outputs are calculated values. The measuring arrangement use for the measurement of rotating machinery!

Wiring plan, connecting the voltage and current inputs to power network.


DATCON

The application of: The vectorsum of all phase voltages is always zero!

The terminal "k" of CT and terminal "v" of VT you have to connecting to earth!

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

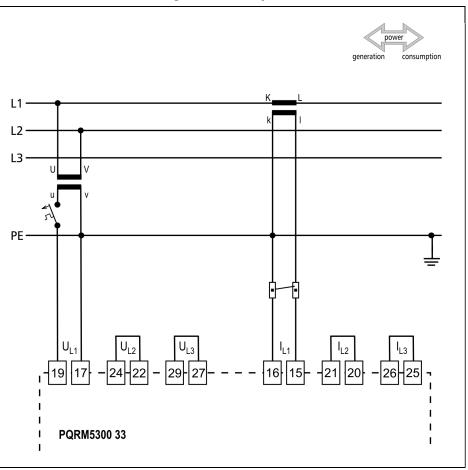
4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the connections

5.7. Connecting the measuring inputs to symmetrical three-phase power network without neutral conductor. (3 phase, 3 wire, 1 measuring)

ODATCON

The following figure shows the wiring plan to symmetrical three-phase network without neutral conductor. Measuring only one phase. The three phase outputs are calculated values. The measuring arrangement use for the measurement of rotating machinery!


Wiring plan, connecting the voltage and current inputs to power network.

The application of: The vector sum of all phase voltages is always zero!

The terminal "k" of CT and terminal "v" of VT you have to connecting to earth!

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

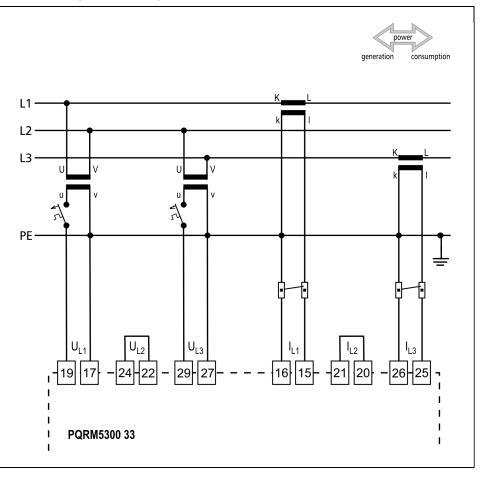
3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the connections

5.8. Aron mode (3 phase, 3 wire, 2 measuring)

The following figure shows the wiring plan to three-phase network without neutral conductor with two measuring input. The three phase outputs are calculated values.

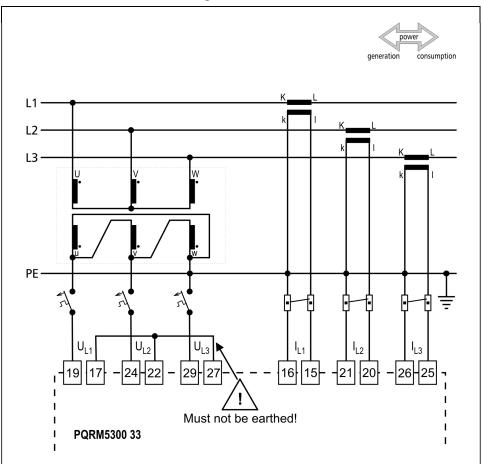

Wiring plan, connecting the voltage and current inputs to power network.

The application of: The vectorsum of all phase voltages is always zero!

The terminal "k" of CT and terminal "v" of VT you have to connecting to earth!

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.


3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the
connectionsCheck if the cables are connected properly (have you
connected all the cables, have you connected to the right
place, do not the cable-ends touch each other).

5.9. Connecting the measuring inputs to three-phase power network trough three-phase voltage transformers without common connection point (3 phase, 3 wire, 3 measuring, 3fmv)

The following figure shows the wiring plan to three-phase network without neutral conductor. The voltage inputs are connecting trough one three-phase transformers to power network. One secondary phase of the three-phase transformers is connecting to earth.

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.

Check if the cables are connected properly (have you connected all the cables, have you connected to the right place, do not the cable-ends touch each other).

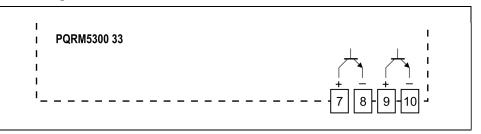
Wiring plan, connecting the voltage and current inputs to power network.

The terminal "k" of CT you have to connecting to earth!

One phase of three-phase transformer you have to connecting to earth!

The 17, 22, 27 input of devices shall not connect to earth!

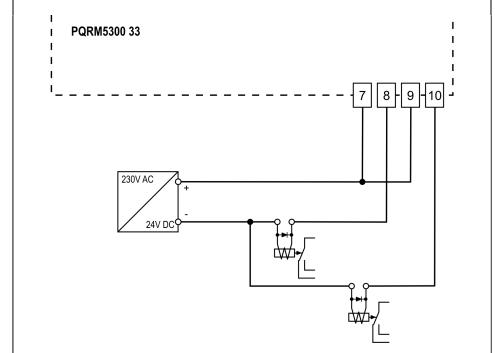
The VT you must mull $\sqrt{3}$


Checking the connections

5.10. Connecting the digital outputs

The digital outputs of the device are passive switch transistor. The external power supply is required for operation. The figure shows the outputs terminal of the switching transistor

Output terminal of the digital outputs



The technical parameters of the digital outputs refer to the **10.1. Technical specification** chapter.

O DATCON

Example: Connect the digital output for processing unit.

Wiring plan, connecting to processing unit.

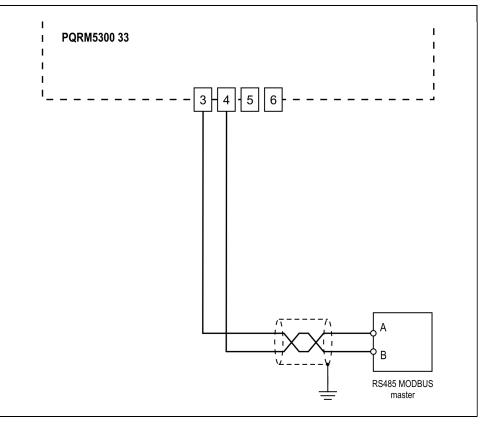
Be careful the polarity of the cables!

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.


9 -10 : digital output 1 7 - 8 : digital output 2

Checking the connections

5.11. Connecting to MODBUS RS485 network

The following figure shows the wiring plan, connecting the devices with MODBUS RS485 option to processing unit.

1. Loosen terminal screws.

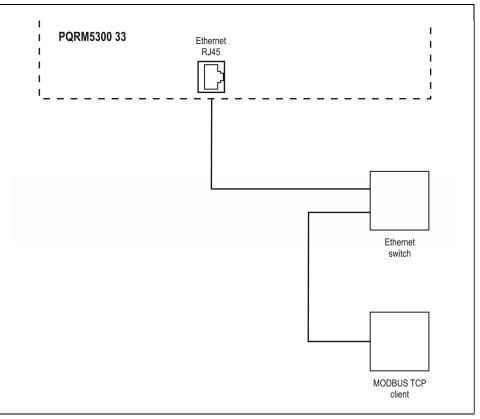
2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.

Check if the cables are connected properly (have you connected all the cables, have you connected to the right place, do not the cable-ends touch each other).

Wiring plan, connecting to processing unit.


Be careful the polarity of the cables!

Checking the

connections

5.12. Connecting to ETHERNET network

The following figure shows the wiring plan, connecting the devices with ETHERNET option to processing unit.

 Connect the ETHERNET cable to RJ45 socket, which located on the backplane of the device.
 Check the hold of the wires in connector by pulling on

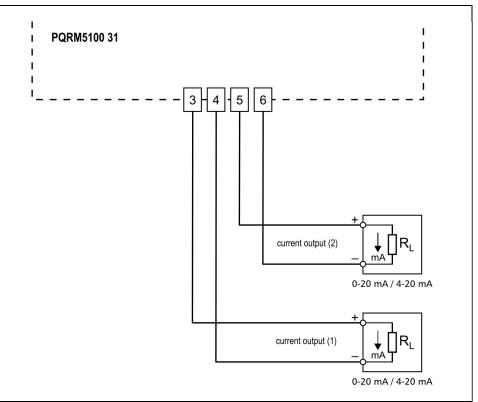
2. Check the hold of the wires in connector by pulling on them firmly.

Check if the cables are connected properly (have you connected all the cables, have you connected to the right place, do not the cable-ends touch each other).

Wiring plan, connecting to processing unit.

Checking the

connections



5.13. Connecting the analog output to signal processing unit

The following figure shows the wiring plan, connecting the devices with Analog output option to processing unit.

Wiring plan, connecting the analog output to the signal processing unit

Be careful the polarity of the cables!

1. Loosen terminal screws.

2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.

Checking the connections

Wiring plan, connecting the power supply

In case of DC supply the polarity is indifferent

I I PQRM5300 33	
	i
'	
	power supply: 230 V AC/DC (PQRM5300 33 PS) / 24 VDC (PQRM5300 33)

The following figure shows the wiring plan, connecting the

PQRM5300 33 Ux Ix xx xx to the power supply:

1. Loosen terminal screws.

5.14. Connecting the power supply

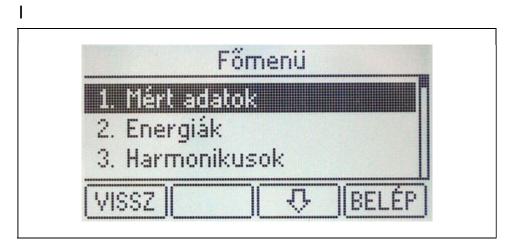
2. Insert the wire ends into the open terminals according to the wiring plan.

3. Screw the terminal in.

4. Check the hold of the wires in terminals by pulling on them firmly.

Check if the cables are connected properly (have you connected all the cables, have you connected to the right place, do not the cable-ends touch each other).

Put the instrument After you have completed all the connections, put the instrument under supply voltage. If the connections are under supply voltage correct the green indicator gives light and you can detect an output signal according to the measured value by the instrument.


Checking the connections

6. Setting – up

6.1. First steps

If you turned on the devices, you can see on display the Main menu. The bottom line of the display you can read the function of F1, F2, F3, F4 buttons. This line shows always the current functions the buttons.

Submenus for Main menu:

- 1. Measured data
- 2. Energy
- 3. Harmonics
- 4. Power limit
- 5. Errors
- 6. User settings
- 7. Configuration

If the power supply restore, the display will show that menu point, which was displaying when powered off.

You can moving in menu with a \bigcirc and \bigcirc buttons.

You can entering in menu with <u>ENTER</u> button. You can exit the menu with <u>BACK</u> button.

Language settings are in <u>6. Kezelői beállítások</u> / <u>6. User</u> <u>settings</u> menu, <u>6.1 Magyar / English</u> / <u>6.1 English / Magyar</u> submenu.

6.2. Main menu, Measured data

Here you can select to display the measured values.

- 1.1. L1 phase
- 1.2. L2 phase
- 1.3. L3 phase
- 1.4. L1 L2 L3 phases
- 1.5. User display 1
- 1.6. User display 2

The following measured values are displayed in menu <u>L1</u> phase, <u>L2 phase</u>, <u>L3 phase</u>

- U (RMS Voltage of phase),
- I (RMS Current of phase),
- f (Measured network freuqvency),
- P (Measured active power),
- Q (Measured reactive power),
- S (Measured apparent power)
- PF (Calculated power factor),

• THD U (Calculated total harmonic distortion of phase voltage (up to 19. harmonic) [%]

• THD I (Calculated total harmonic distortion of phase current (up to 19. harmonic) [%]

The device desplayed the following network data in the <u>L1 L2 L3 phases</u> submenu:

- U12 (phase voltage between L1and L2 phase),
- U13 (phase voltage between L1 and L3 phase),
- U23 (phase voltage between L2 and L3 phase),
- φ 12 (Measured phase angle between of L1 and L2 phase),
- ϕ 13 (Measured phase angle between of L1 and L3 phase),
- ΣP (Active power of three phase network),
- ΣQ (Reaactive power of three phase network),
- ΣS (Apparent power of three phase network),
- ΣPF (Power factor of three phase network),
- f (network frequency),

The <u>1.5. User dispaly 1</u> and <u>1.6. User display 2</u> submenus are displayed as specified by the user-measured values (You can set this display on <u>6. User settings</u> menu, <u>6.3. Edit</u> <u>user display 1</u> and <u>6.4. Edit user display 2</u>).

You can set with the ZOOM button the characterize of displayed measured values. You can move with ↓ and 1 buttons in the menu.

6.3. Main menu, Energy menu

Menu items and their meaning:

- 2.1. L1 energy
- 2.2. L2 energy
- 2.3. L3 energy
- 2.4. Energy sum

The individual menu items are displayed as a measured value:

- +E (Measured values of consument active energy),
- -E (Measured values of produced active energy),
- +RE (Measured values of inductiv reactive energy),
- -RE (Measured values of capacitiv reactive energy),

You can choose the units with k/M/G button.

The energy registers are clearing from submenu <u>7.7. Clear</u> enregy of <u>7. Configurations</u> menu.

6.4. Main menu, Harmonics menu

The device can calculate voltage and current content for 18 harmonic. Here you find the meassurement results. You need to enable harmonic analysis option. If you enable this function, the measurement update time greatly increases.

6.5. Main menu, Errors menu

The device stores the error events of network (overvoltage, overcurrent, voltage dip and interruption), synchronizing signal errors (if demand function is enabled) and communication errors.

The log can you clear from <u>7.6. Clear errors</u> submenu of <u>7.</u> <u>Configurations</u> menu.

Press the BACK button to return to the menu.

6.6. Main menu, Power limit

The device calculates the expected average performance (15 min) from actual power. If this value is greater than the setting limit, the device set to active state the digital1 output.

If the value is lower than the limit at the next sampling, the device turn back the digital1 output. If the value is greater than the setting limit, the device holds the digital1 output to active state, and the digital2 output sets to active state. At the next sampling the value of expeted average power is lower the settings limit, the device set the digital2 output to inactive state.

These outputs states are repeated within a 15 minute period.

You can setting this function on 7.2. Modul #1 settings and 7.4. Power limiting of 7. Configurations menu.

P maximum	0.000 kW
P várt	0.000 kW
Eltelt idő:	317 mp

P maximum: Adjustet demand limit (The value is equal 1.Tariff / 2.Tariff / 3.Tariff / 4.).

P expected: Expected power demand value for end of 15. minutes

P current: Current power demand value

Elapsed Time: time after the last sync pulse

If the sync pulse is out, the following massage are readable on display:

"Syncronpulse out!" "Unexpected syncronpulse!" Press the BACK button to return to the menu.

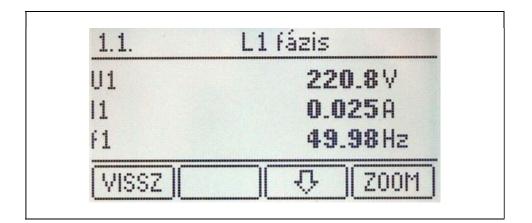
6.7. Main menu, User settings menu

In this menu, you can set parameters for display. Here you can edit the custom display images, and can you set display brightness and backlight intensity.

Non password-protected area

6.8. Main menu, Configurations menu

Here you can configure the devices. Here you can enable/disable the errors, clearing the energy registers and test the analog/digital outputs.


Password-protected area.

7. Settings

7.1. General information

After you turn on the device, you can see in the display the Main menu or the last selected menu. In last line of display show the function of soft buttons (F1, F2, F3, F4).

First step change please the display backlight intensity in <u>6.2. Screen settings</u> menu. If you don't press the soft buttons for 30 seconded, the display goes to standby mode. (Backlight reduces the brightness). If you press any buttons, first wake up the display backlight. In this case you must press the button again, if you want moving in the Menu.

7.1.1. Required settings

After first power up the device is in working condition. In this case the device working in factory settings.

For proper operation, the following settings may be required:

• 7.1.1. Measure configuration

Here you can set the measuring arrangement.

• <u>7.1.2. Transformations</u>

If you connect the device trough the transformers to the network, here you can set the ratio of the transformers.

• 7.1.3. CT phase shift

If you know the phase shift (50Hz) of the current transformer, you can specify the value here. The device to compensate the measurement results.

• 7.1.4. Sampling time

The device sampling the necessary data for the calculation. If the sampling time goes out (minimum 80 ms) the MCU of device makes the calculations and updates the outputs. You can increase the sampling time. It is possible to reduce the fluctuation of measured values. The sampling time modification change refresh time of the instrument.

• <u>7.1.5. Current threshold</u>

When the current threshold function is used on the current input, the instrument eliminates the input signal under x% of the input range.

This function may be useful when the power network is noisy either in voltage off state or in unloaded state and this effect may cause an error in energy measurement. [Default: 0.0%]

• 7.2. Modul #1 settings

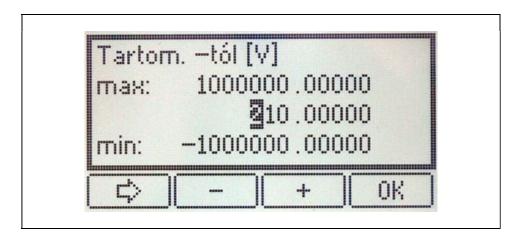
Here you can set the Digital input/output options.

• <u>7.3. Modul #2 settings</u>

Here you can set the analogue output option or RS485 communication option.

<u>7.4 Power limiting</u>

Here you can set the tariff registers for demand function.


• 7.5. Clear errors

Here you can delete the errors registers

7.1.2. Entering numbers (Editing numbers)

When you would like editing the number, you can see the following window:

The editing number name and his unit are in the first line. The number is in the third line. The cursor marks the current local value. The value can edit with + and - buttons. The cursor can moves with = button. Press the OK button to accept the value.

ODATCON

	7.2. Enter to User settings menu
Entering to submenu	Move with the 🔯 / 🕄 buttons in the Main menu, and
	select the <u>6. User setting menu</u> . Press the ENTE switch.
Submenu of User	Submenu of <u>6. User settings menu:</u>
settings menu	• 6.1. English / Magyar
	• 6.2. Screen settings
	• 6.3. Edit user display 1
	• 6.4. Edit user display 2
	7.2.1 Language selection
Function	In <u>6.1 English / Magyar</u> menu you can select the language of
	the device.
	Default language is Magyar.
Sequence of operations	1. Log in the <u>6. User settings</u> menu
	2. Choose the <u>6.1 English / Magyar</u> menu of the <u>6. User</u>
	<u>settings</u> menu with ① / 단 buttons, and press the ENTE
	switch.
	3. Select the languae in the <u>6.1.English / Magyar</u> submenu with 1 ↓ buttons, end press the SEL button.
	4. Press the OK button.
	If the language was Hungary:
	1. Log in the <u>6. Kezelői beállítások</u> menu
	2. Choose the <u>6.1 Magyar / Angol</u> menu of the <u>6. Kezelői</u>
	<u>beállítások</u> menu with 🕜 / 🕄 buttons, and press the
	BELÉP switch.
	3. Select the languae in the <u>6.1. Magyar / English</u> submenu
	with 🟦 / 🕀 buttons, end press the JELÖL button.
	4. Press the OK button.

	7.2.2. Setting the brightness of displaybacklight
Function	In the <u>6.2. Screen settings</u> menu_can you set the brightness of display. Here you can set again the backlight active time and the standby light level. The brightness of display is 100% in active mode.
Sequence of operations	1. Log in the <u>6. User settings</u> menu
	2. Choose the <u>6.2 Screen settings</u> menu of the <u>6. User</u>
	settings menu with raise / J buttons, and press the ENTE switch.
	3. Choose the <u>Standby light level</u> menu of the <u>6.2 Screen</u>
	<u>settings</u> menu with 🕜 / 뒞 buttons, and press the Edit switch.
	4. Please type the value with help 🖃, 🗕, 🕂 switches,
	and press the OK switch to accept the value.
	5. Choose the <u>Screen active time</u> menu of the <u>6.2 Screen</u> <u>settings</u> menu with 1 / J buttons, and press the <u>Edit</u> switch.
	6. Please type the value with help 🖃, 🗕, 🕂 switches,
	and press the OK switch to accept the value.
	7. Choose the Contrast value menu of the <u>6.2 Screen</u>
	<u>settings</u> menu with 🕜 / 🕓 buttons, and press the Edit
	switch.
	8. Please type the value with help ⇒, -, + switches,
	and press the OK switch to accept the value.
	9. Press the BACK switch to exit from <u>6.2 Screen settings</u>
	submenu.

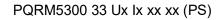
7.2.3. Editing the user displays

FunctionThe device has two special displays. These displays are
editable from user. This displays show just the measure
result of the network. You can edit these displays in the
menu 6.3. Edit user display 1 and 6.4. Edit user display 2.

Sequence of operations 1. Log in the <u>6. User settings</u> menu

2. Choose the <u>6.3 Edit user display 1</u> or <u>6.4 Edit user display</u> <u>2</u> menu of the <u>6. User settings</u> menu with 1 + 1 = 0 buttons, and press the ENTE switch.

3. Select the line with 🕓 switch, and then select the


measured value of network witch $(rac{1})$ / $rac{1}$ switches.

If it is necessary make this operation in the other lines.

4. Press the BACK switch to exit from <u>6.3. Edit user display</u>

<u>1</u> or <u>6.4. Edit user display 2</u> submenu.

Entering in the menu

7.3. Configurations menu

2. Please type the password with help \Rightarrow , -, +

switches, and press the OK switch to accept the value. The default password is 0.

The password is modifying in the <u>7.8 User password</u> submenus of <u>7. Configurations</u> menu.

max:	9999
IIIdă.	3333
	<u>u</u>
min:	-9999

Submenus of Configurations menu

If the password was correct, the submenus of <u>7</u>. <u>Configurations</u> menu are visible.

- 7.1. Measure settings
- 7.1.1. Measure configuration
- 7.1.2. Transformation
- 7.1.3. CT phase shift
- 7.1.4. Sampling time
- 7.1.5. Current threshold
- <u>7.2. Modul #1 settings</u>
- 7.3. Modul #2 settings
- 7.4. Power limiting
- 7.5. Error LED setting
- <u>7.6. Clear errors</u>
- 7.7. Clear energy
- <u>7.8. User password</u>
- 7.9. Device to default state
- 7.8. Program version, Ser.Nr.

Function	7.3.1 Measure input settings In the <u>7.1 Measure configurations menu you can set the how</u> connect the device to network. Here you can set the voltage and currents transformers for inputs (if they are usable) and other special parameters of the measurement.
	7.3.1.1. Measure configuration
Function	The device can operate several types of measurement setup. In the 7.1 Measure configurations menus you can set the measuring arrangement. Possible measuring modes:
	<u>3 phase, 4 wire, 3 meter:</u> Three phase measurement with neutral conductor
	<u>3 phase, 3 wire, 3 meter:</u> Three phase measurement without neutral conductor
	<u>3 phase, 3 wire, 2 measure:</u> Three phase measurement without neutral conductor. Using 2 meter configuration. (Aron mode)
	<u>3 phase, 4 wire, 1 meter:</u> Three phase measurement with neutral conductor. Using 1 meter configuration. It is assumed symmetric load system, so you can use the measurement of rotating electrical machines.
	<u>3 phase, 3 wire, 1 meter:</u> Three phase measurement without neutral conductor. Using 1 meter configuration. It is assumed symmetric load system, so you can use the measurement of rotating electrical machines.
	<u>3 phase, 3 wire, 3 meter, 3 fmv:</u> Three phase measurement without neutral conductor, and threephase voltage transformers with delta secondary winding. The secondary winding of the transformer is connecting to earth. The Voltage transformers ratio is multiplied $\sqrt{3}$!
	You can find the electrical wiring diagrams for each measurement arrangement on 5. Connecting chapter.

ODATCON

- Sequence of operations 1. Log in the 7. Configurations menu
 - 2. Choose the 7.1. Measure settings menu of the

<u>7. Configurations</u> menu with 1 + 1 = 1 buttons, and press the ENTE switch.

3. Choose the 7.1.1. Measure configurations menu of the

<u>7.1 Measure settings</u> menu with \bigcirc / \bigcirc buttons, and press the **ENTE** switch.

4. Select the the measuring arrangement with \square switch, and then Press the SEL switch.

5. Press the OK switch to save and to exit from <u>7.1.1.</u> <u>Measure configuration</u> submenu.

7.3.1.2. Voltage Transformers (VT) and Current Transformers (CT) ratio settings **Function** In the 7.1.2. Transformations menu can you set the ratio of Voltage and Currents transformers The voltage inputs of the instrument may connect directly to the power network (Vin < 250 Vrms [nominal]), or through voltage transformers (Vin > 250 Vrms [nominal]). When you connect the inputs directly you should set VT=1. When you connect the inputs through voltage transformers you should set the VT ratio of the applied transformers, so the instrument able to calculate with the primary voltage. (e.g. 1000/100 V/V, VT=10) [VT Factory default: 1.] The current input of the instrument may connect directly to the power network (lin < 5 Arms [nominal]), or through a current transformer (lin > 5 Arms [nominal]). When you connect the input directly you should set CT=1. When you connect the input through a current transformer you should set the CT ratio of the applied transformer, so the instrument able to compute with the primary current. (e.g. 100/5 A/A, CT=20) [CT Factory default: 1.] **Sequence of operations** 1. Log in the 7. Configurations menu 2. Choose the 7.1. Measure settings menu of the 7. Configurations menu with $|| \uparrow || / || \downarrow ||$ buttons, and press the ENTE switch. 3. Choose the 7.1.2. Transformation menu of the 7.1 Measure settings menu with 1 1 1 U buttons, and press the ENTE switch 4. Select the the VT or CT transform with Û switch, and then Press the EDIT switch. 5. Please type the VT/CT value with help \Rightarrow + switches, and press the OK switch to accept the value. 6. Repeat please the 4. step and 5. step with other CT/VT transformers. 7. Press the OK switch to save and to exit from 7.1.2. Transformations submenu

	7.3.1.3. Phase lag of CT settings
Function	If you know the phase shift (50Hz) of the current transformer, you can specify the value here. The device to compensate the measurement results. [Default: 0.]
Sequence of operations	 Log in the <u>7. Configurations menu</u> Choose the <u>7.1. Measure settings menu of the</u> <u>7. Configurations menu with</u> ① / ③ buttons, and press the <u>ENTE</u> switch. Choose the <u>7.1.3. CT phase shift menu of the</u> <u>7.1 Measure settings menu with</u> ① / ④ buttons, and press the <u>ENTE</u> switch Select the <u>11 Phase shift menu with</u> ③ switch, and then Press the <u>EDIT</u> switch. Please type the phase value with help ➡, _, + switches, and press the OK switch to accept the value. Repeat please the 4. step and 5. step with other currents transformers.
	7. Press the OK switch to save and to exit from <u>7.1.3. CT</u>

phase shift submenu

Function

7.3.1.4. Sampling time setting

The device sampling the necessary data for the calculation. If the sampling time goes out (minimum 80 ms) the MCU of device makes the calculations and updates the outputs. You can increase the sampling time. It is possible to reduce the fluctuation of measured values. The sampling time modification change refresh time of the instrument.

[Default: 80 ms]

Sequence of operations 1. Log in the 7. Configurations menu

2. Choose the 7.1. Measure settings menu of the

<u>7. Configurations</u> menu with 1 + 1 = 1 buttons, and press the ENTE switch.

3. Choose the 7.1.4. Sampling time menu of the

7.1 Measure settings menu with 1 / U buttons, and

press the ENTE switch

4. Select the sampling time with switch, and then Press the SEW switch.

5. Press the OK switch to save and to exit from

7.1.4.Sampling time submenu

7.3.1.5. Current threshold **Function** When the current threshold function is used on the current input, the instrument eliminates the input signal under x% of the input range. This function may be useful when the power network is noisy either in voltage off state or in unloaded state and this effect may cause an error in energy measurement. [Default: 0.0%] **Sequence of operations** 1. Log in the 7. Configurations menu 2. Choose the 7.1. Measure settings menu of the 7. Configurations menu with 1 / 4 buttons, and press the ENTE switch. 3. Choose the 7.1.5. Current threshold menu of the 7.1 Measure settings menu with 1 1 | 1 | U | U | buttons, and press the ENTE switch 4. Press the EDIT switch. 5. Type the current threshold value with help \Rightarrow + switches, and press the OK switch to accept the value. 6. Press the BACK switch to save and to exit from 7.1.5.

Current threshold submenu

Function

7.4. Setting the optional modules

You can set here the modules (analogue output, communication output, digital inputs and digital outputs) The modules are available in <u>7.2. Modul #1 settings</u> and <u>7.3. Modul #2 settings</u> submenus.

Warning! If you can not enter to the submenu, the module is unaviable.

7.4.1. Digital inputs and outputs settings

The digital outputs have much function.

- Energy pulse function
- Energy sign function
- Limit output function
- Alarm output function
- Demand function

The next option are available for device (just one in same time):

- Two digital outputs
- Two digital outputs and three digital inputs.

The digital outputs (DO1, DO2) can you set in <u>7.2. Modul #1 settings</u> menu. In the following page explan the digital outputs settings via D01.

The demand function use the digital inputs, therefore you can set this inputs in <u>7.4 Power limiting</u> menu,

Function

	7.4.1.1. Digital output, Energy pulse output settings
Function	The instrument has two open collector transistor pulse outputs for transmitting export-import energy values for data acquisition purposes. The frequency of the pulse outputs is proportional to the measured energy. Here you can set all parameters of the pulse outputs
Sequence of operations	1. Log in the <u>7. Configurations</u> menu
	2. Choose the <u>7.2. Modul #1 settings</u> menu of the <u>7. Configurations</u> menu with ① / ➡ buttons, and press the ENTE switch.
	3. Choose the <u>7.2.1 D1 digital output</u> menu of the <u>7.2. Modul</u> <u>#1 settings</u> menu with 1 / J buttons, and press the ENTE switch
	4. Select the the <u>Energy pulse</u> with <u>Select</u> switch, and then Press the <u>SEL</u> switch.
	5. Press the OK switch.
	6. Select from the menu with 😱 switch the measured
	quantity what you are going to transmit.
	7. Press the SEL switch.
	8. Press the OK switch.
	9. Select from the menu with 📳 switch the <u>D1 pulse</u> menu
	10. Type the Pulse equivalent value with help 📄, –, +
	switches, and press the OK switch to accept the value.
	11. Select from the menu with 💭 switch the <u>D1 lenght</u>
	menu. 12. Type the Pulse the pulse width in milliseconds value with
	help \Rightarrow , -, + switches, and press the OK switch to
	accept the value.
	13. Select from the menu with 💭 switch the <u>D1 gap</u> menu.
	14. Type the the minimum time value (between the pulses)
	in milliseconds with help \Rightarrow , -, + switches, and press
	the OK switch to accept the value.
	15. Press the OK switch.

16. Select from the menu with Switch the output polarity.

When you select the "NO (Normally open)" state then the output transistor is in off state when there is no pulse on the output. When you select the "NC (Normally closed" state then the output transistor is in on state when there is no pulse on the output.

17. Press the SEL switch.

18. Press the OK switch.

19. Press the **BACK** switch to exit from <u>Modul #1 settings</u> submenu

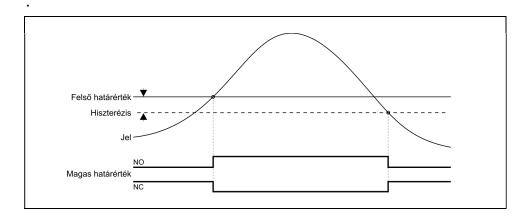
	7.4.1.2. Digital output, Energy sign output settings
Function	The instrument can transmit the energy sign on the Pulse outputs. + sign: energy export - sign: energy import Here you can select the output for transmitting sign, the energy (E_P , E_Q) and the polarity of the output.
Sequence of operations	 Log in the <u>7. Configurations menu</u> Choose the <u>7.2. Modul #1 settings menu of the</u> <u>7. Configurations menu with ↑</u> / ↓ buttons, and press the <u>ENTE</u> switch. Choose the <u>7.2.1 D1 digital output</u> menu of the <u>7.2. Modul</u> <u>#1 settings menu with ↑</u> / ↓ buttons, and press the <u>ENTE</u> switch Select the the <u>Energy sign</u> with ↓ switch, and then Press the <u>SEL</u> switch. Press the <u>OK</u> switch. Select from the menu with ↓ switch the measured quantity what you are going to sign on outputs. Press the <u>OK</u> switch. Press the <u>OK</u> switch. Select from the menu with ↓ switch the output polarity. When you select the "NO (Normally open)" state then the output transistor is in off state when there is no pulse on the output. When you select the "NC (Normally closed" state then the output transistor is in on state when there is no pulse on the output. Press the <u>SEL</u> switch. Press the <u>BACK</u> switch to exit from <u>Modul #1 settings</u> submenu

	7.4.1.3. Digital output, Limit output settings
Function	Here you can set low limit-, high limit values and hysteresis and assign them to any measured quantity. The instrument compares continuously this quantity to the measured value and activates digital output(s) according the output settings.
Sequence of operations	1. Log in the <u>7. Configurations</u> menu
	2. Choose the <u>7.2. Modul #1 settings menu</u> of the
	7. Configurations menu with 🕜 / 뒞 buttons, and press
	the ENTE switch.
	3. Choose the <u>7.2.1 D1 digital output</u> menu of the <u>7.2. Modul</u>
	<u>#1 settings</u> menu with 1 / ↓ buttons, and press the
	ENTE switch.
	4. Select the the <u>Limit signal</u> with 🕓 switch, and then
	Press the SEL switch.
	5. Press the OK switch.
	6. Select from the menu with switch the measured
	quantity what you are going to apply the limit function.
	7. Press the SEL switch.
	8. Press the OK switch.
	9. Select from the menu with switch the limit mode
	Signal low limit"
	The output changes into active state when measured value
	becomes lower as the monitored value.
	The output changes into inactive state when measured value become higher as the monitored value and hysteresis

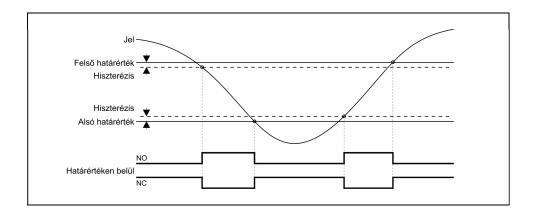
Hiszterézis -♥ -Alsó határérték

Alacsony határérték

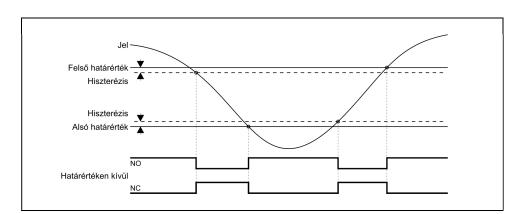
NO


NC

"Signal high limit"


The output changes into active state when measured value becomes higher as the monitored value.

The output changes into inactive state when measured value become lower as the monitored value and hysteresis


"Signal inside limit"

The output changes into active state when measured value is between of range upper and lower limit as the monitored value. The output changes into inactive state when measured value is out of range as the monitored value. The hysteresis is like the high and low limit functions can use it.

"Signal outside limit"

The output changes into active state when measured value is out upper and lower limit as the monitored value. The output changes into inactive state when measured value is between of range upper and lower limit as the monitored value. The hysteresis is like the high and low limit functions can use it.

10. Press the SEL switch.

11. Press the OK switch.

12. Type the High limit value with help , _, +

switches, and press the OK switch to accept the value

13. Type the Low limit value with help \Rightarrow , -, + switches, and press the \overline{OK} switch to accept the value.

14. Type the High limit value with help 🖃, 🗕, 🕂

switches, and press the OK switch to accept the value

15. Select from the menu with switch the output polarity.

When you select the "NO (Normally open)" state then the output transistor is in off state when there is no pulse on the output. When you select the "NC (Normally closed" state then the output transistor is in on state when there is no pulse on the output.

16. Press the SEL switch.

17. Press the OK switch.

18. Press the **BACK** switch to exit from <u>Modul #1 settings</u> submenu

	7.4.1.4. Digital output, Alarm output settings
Function	The instrument can generate alarm signaling in a case of one or more errors. It can be select which errors generate the alarm signaling. The alarm state activates the digital outputs.
Sequence of operations	 Log in the 7. Configurations menu Choose the 7.2. Modul #1 settings menu of the 7. Configurations menu with ↑ / ↓ buttons, and press the ENTE switch. Choose the 7.2.1 D1 digital output menu of the 7.2. Modul #1 settings menu with ↑ / ↓ buttons, and press the ENTE switch. Select the the Error signal with ↓ switch, and then Press the SEL switch. Press the OK switch. Select from the menu with ↓ switch the measured quantity what you are going to apply the error function. Press the SEL switch. Select from the menu with ↓ switch the output polarity. Warning! You can selet same errors! Press the OK switch. Select from the menu with ↓ switch the output polarity. When you select the "NO (Normally open)" state then the output transistor is in off state when there is no pulse on the output. When you select the "NC (Normally closed" state then the output transistor is in on state when there is no pulse on the output. Press the SEL switch. Press the BACK switch to exit from Modul #1 settings submenu

Function

7.4.1.5. Digital output, Demand control function setting

The device calculates the expected average performance (15 min) from actual power. If this value is greater than the setting limit, the device set to active state the digital1 output. If the value is lower than the limit at the next sampling, the device turn back the digital1 output. If the value is greater than the setting limit, the device holds the digital1 output to active state, and the digital2 output sets to active state. At the next sampling the value of expeted average power is lower the settings limit, the device set the digital2 output to inactive state.

These outputs states are repeated within a 15 minute period.

The device uses this function the DI1, DI2, DI3 digital inputs. All inputs have dedicated function. The DI1 input is the syncron pulse input. The DI2, DI3 inputs are tariff input and combination of they the device uses 4 tariff.

D	12	D	13	Demand
NO	NC	NO	NC	Demand
L/N	H/Z	L/N	H/Z	Tariff 1
L/N	H/Z	H/Z	L/N	Tariff 2
H/Z	L/N	L/N	H/Z	Tariff 3
H/Z	L/N	H/Z	L/N	Tariff 4

L/N = Logic 0 / Open

ODATCON	PQRM5300 33 Ux Ix xx xx (PS)
Sequence of operations	 Log in the <u>7. Configurations</u> menu Choose the <u>7.2. Modul #1 settings</u> menu of the <u>7. Configurations</u> menu with ① / ↓ buttons, and press the ENTE switch.
	3. Choose the <u>7.2.1 D1 digital output</u> menu of the <u>7.2. Modul</u> <u>#1 settings</u> menu with ① / ↓ buttons, and press the ENTE switch.
	4. Select the the <u>Energy 1 limit</u> with 🕓 switch, and then Press the SEL switch.
	5. Press the OK switch.
	6. Select from the menu with 🖳 switch the output polarity.
	When you select the "NO (Normally open)" state then the output transistor is in off state when there is no pulse on the output. When you select the "NC (Normally closed" state then the output transistor is in on state when there is no pulse on the output.
	7. Select the the <u>Energy 2 limit</u> with switch, and then Press the SEL switch.
	8. Press the OK switch.
	9. Select from the menu with 🕄 switch the output polarity.
	10. Press the SEL switch.
	11. Press the OK switch.
	12. Press the BACK switch to exit from <u>Modul #1 settings</u> submenu

ODATCON

Function	7.4.1.6. Digital output, digital output test Digital outputs can be tested regardless of their function, This function you can easier to detect the connections, cables, and fault I / O modules.
Sequence of operations	 Log in the <u>7. Configurations menu</u> Choose the <u>7.2. Modul #1 settings menu of the</u> <u>7. Configurations menu with</u> ① / ③ buttons, and press the <u>ENTE</u> switch. Choose the <u>7.2.3 Digital output test menu of the <u>7.2.</u> <u>Modul #1 settings menu with</u> ① / ③ buttons, and press the <u>ENTE</u> switch.</u> Select the the <u>1.output</u> or <u>2.output</u> with ③ switch, and then Press the <u>EDIT</u> switch. Press the <u>BACK</u> switch to exit from <u>Modul #1 settings</u> submenu

Function	7.4.2. Analogue output settings There can be two optional dual independent analog outputs of the instrument. Any of the measured quantities can be transmit in a 0 / 4-20 mA current form.
	Here you can set all of the parameters of the outputs.
	Measured quantities are: $U_{12}, U_{23}, U_{31}, U_{L1}, U_{L2}, U_{L3}, I_{L1}, I_{L2}, I_{L3},$ $P_{L1}, P_{L1}, P_{L3}, Q_{L1}, Q_{L2}, Q_{L3}, S_{L1}, S_{L2}, S_{L3},$ $PF_{L1}, PF_{L2}, PF_{L3}, \phi_{L1}, \phi_{L2}, \phi_{L3},$ $\Sigma P, \Sigma Q, \Sigma S, \Sigma PF, \Sigma \phi, f_1, f_2, f_3; \rho_{12}, \rho_{13}$
Sequence of operations	 Log in the <u>7. Configurations menu</u> Choose the <u>7.2. Modul #2 settings menu of the</u> <u>7. Configurations menu with</u> ↑ / ↓ buttons, and press the ENTE switch. Choose the <u>7.3.1 A1 analog output</u> menu of the <u>7.3.</u> Modul #2 settings menu with ↑ / ↓ buttons, and press the ENTE switch. Press the ENTE switch. Choose the assign menu with ↑ / ↓ buttons, and press the EDIT switch. Select from the menu with ↓ switch the measured quantity what you are going to transmit. Press the SEL switch. Press the EDIT switch. Ochoose the Range from menu with ↑ / ↓ buttons, and press the EDIT switch. Type the low value of the output scale with help ⇔, -, + switches, and press the ENTE switch. Type the high value of the output scale with help ⇔, -, + switches, and press the ENTE switch. Type the high value of the output scale with help ⇔, -, + switches, and press the ENTE switch.

	7.4.2.1. Analogue output testing
Function	You can here testing the analouge outputs.
Sequence of operations	 Log in the <u>7. Configurations menu</u> Choose the <u>7.2. Modul #2 settings menu of the</u> <u>7. Configurations menu with</u> / buttons, and press the <u>ENTE</u> switch. Contents this menu depends on device construct!
	 3. Choose the <u>7.3.1 A1 analog output</u> menu of the <u>7.3.</u> <u>Modul #2 settings</u> menu with 1 / J buttons, and press the <u>ENTE</u> switch. 4. Press the <u>ENTE</u> switch.
	 4. Press the <u>ENTE</u> switch. 5. Choose the <u>assign</u> menu with ① / ↓ buttons, and press the EDIT switch.
	 6. Select from the menu with Switch the <u>Test value</u>. 7. Press the OK switch.
	8. Choose the <u>7.3.3. Analogue outputs test</u> menu of the <u>7.3.</u> <u>Modul #2 settings</u> menu with 1 / U buttons, and press the ENTE switch.
	9. Press the EDIT switch. 10. Type the test value with help 🖘, -, + switches, and
	press the OK switch to accept the value. The testvalue displayed on the analogue output. 11. Press the BACK switch to exit from <u>Modul #2 settings</u>
	submenu.

Attention! If "Test value" position leaves the 'Select' window, the analog output will not change the current output.

Example:		
Setting analog of	output	
Туре	4–20mA	
Mode	Error mode	
Min.	3.800 mA	
Max.	20.100 mA	
Error	20.500 mA	
Select	Test value	
Range form	0.000	
Range to	1000.000	
Signal of analog	<u>g output</u>	
Test value	0.000	analogue out = 4 mA
Test value	500.000	analogue out = 12 mA
Test value	1000.000	analogue out = 20 mA
Test value	-6.250	analogue out = 3.9 mA
Test value	1006.250	analogue out = 20.1 mA
Test value	-15.000	analogue out = 20.5 mA
Test value	1010.000	analogue out = 20.5 mA

	7.4.3. Communication interface
	7.4.3.1. MODBUS RS485 interface setting
Function	It can be read out through the communication output all of the measured quantities. The optional communication option have two operating mode: • MODBUS RTU Slave RS485
	MODBUS ASCII Slave RS485
Sequence of operations	1. Log in the <u>7. Configurations</u> menu
	2. Choose the <u>7.2. Modul #2 settings</u> menu of the <u>7. Configurations</u> menu with <u>1</u> / 1 buttons, and press
	the ENTE switch.
	Contents this menu depends on device construct.
	3. Choose the Protocol menu with $ \Omega $ / $ J $ buttons, and press the ENTE switch.
	4. Select the protocol, and press OK switch to accept the new value.
	4. Choose the <u>Address</u> menu with ☆ / ↓ buttons, and press the ENTE switch.
	5. Type the MODBUS address of instrument with help , -, + switches, and press the OK switch to accept the value.
	6. Choose the <u>Baud rate</u> menu with ☆ / ᡧ buttons, and press the ENTE switch.
	7. Select from the menu with 📳 switch the Baud rate
	value.
	8. Press the SEL switch.
	9. Press the OK switch.
	10. Choose the <u>Parity</u> menu with \hat{T} / \hat{V} buttons, and press the ENTE switch.
	11.Select from the menu with 🐶 switch the Parity value.
	12. Press the SEL switch.
	13. Press the OK switch.
	14. Choose the <u>Stop bits</u> menu with \hat{T} / \hat{V} buttons, and
	press the ENTE switch.
	15. Select from the menu with 🐺 switch the Stop bit value.
	16. Press the SEL switch.
	17. Press the OK switch.

	18. Choose the <u>Time out m</u> enu with ☆ / ᡧ buttons, and press the ENTE switch.
	19. Type the response timeout of instrument value with help $[r]$, $[-]$, $[+]$ switches, and press the OK switch to accept the value.
	20. Press the BACK switch to exit from <u>Modul #2 settings</u> submenu.
	7.4.3.2. MODBUS TCP Ethernet interface setting
Function	Using of standard ETHERNET interface readable all measured value from device to futher processing. The device can have only one communication interface at same time.
	The settings of modul are in <u>7.3.Modul #2 settings</u> menu.
Sequence of operations	1. Log in the <u>7. Configuration</u> menu.
	2. Choose the <u>7.3. Modul #2 settings</u> menu with the <u>⊥</u> / ↓ buttons, and press the ENTER button.
IP address	3. Choose the <u>7.3.1. IP-address</u> menu with the 🟦 / 뒞 buttons, and press ENTER button.
	4. In the apperaring menu set the IP address with the ➡,
Subnetwork mask	5. Choose the <u>7.3.2. Subnetwork mask</u> menu with the 1/
	6. In the apperaring menu set the Subnetwork mask with the □→ , □ , □ + □ buttons, and press the □OK □ button.
Default gateway	7. Choose the <u>7.3.3. Default gateway</u> menu with the 1/
	8. In the apperaring menu set the Default gateway address with the ⇔, -, + buttons, and press the OK button.
	9. Escape from the <u>7.3. Modul #2 settings</u> menu press the BACK button.
	10. Escape from the <u>7. Configuration</u> menu press the BACK button.

7.4.3.3 MODBUS registers format

The range of measured vale is 1000-7531 address, and they are readable with 3 Modbus command.

•The 1000–1067, 1132–1143, 1304–1327, 2000–2015, 2034–2037, 3000–3015, 3034–3037, 4000–4015, 4034–4037, 4096–4155, 4162–4167, 5000–5009, 6000–6015 of the measured quantities are in 32 bit "Single Precision" floating point format according to IEEE754 standard. This means that all of the measured quantities are stored in 2 MODBUS register.

On the lower address is the upper 16 bit and on the higher address is the lower 16 bit.

• The 1068–1131, 2016–2031, 3016–3031, 4016–4031, 5010–5025, 7000–7063, 7100–7163, 7200–7263 of the measured quantities are in 64 bit unsigned integer format. The bits are stored in 4 MODBUS register.

• The Az 1144–1145, 2032–2033, 3032–3033, 4032–4033, 4160–4161, 5026–5027 of the measured quantities are in 32 bit binary word format. They are the Errors bit. Each error has a bit, and the bit location is specified the errors. The errors bit are stored in 2 MODBUS register. On the lower address is the error 17–32 and on the higher address is the error 1–16.

The description of error numbers (error bits) is in the capture **7.5. Error LED settings**.

• The 1302, 1303, 2038–2077, 3038–3077, 4038–4077 of the measured quantities are in 16 bit unsigned integer format. The bits are stored in 1 MODBUS register.

• The 1200 register is writable with command 16, this value define to unit of the energy registers: 0 – kWh, 1 – MWh, 2 – GWh (Default value and value after reset: 0)

• The 4156–4159, 7300–7331, 7400–7431, 7500–7531 of the measured quantities are in 32 bit unsigned integer format. The bits are stored in 2 MODBUS register.

• The 6016–6079 of the measured quantities are in 64 bit unsigned integer format, but this registers are readable in two pieces (higher 32 bit and lower 32 bit).

Attention! The highlights shows the coherent MODBUS registers in table below, which are readable together.

MODBUS address

All measured value

MB	Content	MB	Content
addr.		addr.	-
1000	U _{eff 12} high 16 bit	1001	U _{eff 12} low 16 bit
	U _{eff 23} high 16 bit	1003	U _{eff 23} low 16 bit
	U _{eff 31} high 16 bit	1005	U _{eff 31} low 16 bit
	U _{eff 1} high 16 bit	1007	U _{eff 1} low 16 bit
1008	U _{eff 2} high 16 bit	1009	U _{eff 2} low 16 bit
1010	U _{eff 3} high 16 bit	1011	U _{eff 3} low 16 bit
1012	l _{eff 1} high 16 bit	1013	I _{eff 1} low 16 bit
1014	l _{eff 2} high 16 bit	1015	I _{eff 2} low 16 bit
1016	l _{eff 3} high 16 bit	1017	I _{eff 3} low 16 bit
1018	P₁ high 16 bit	1019	P ₁ low 16 bit
1020	P ₂ high 16 bit	1021	P ₂ low 16 bit
1022	P₃ high 16 bit	1023	P ₃ low 16 bit
1024	Q₁ high 16 bit	1025	Q ₁ low 16 bit
1026	Q ₂ high 16 bit	1027	Q ₂ low 16 bit
1028	Q ₃ high 16 bit	1029	Q ₃ low 16 bit
1030	S₁ high 16 bit	1031	S ₁ low 16 bit
1032	S ₂ high 16 bit	1033	S ₂ low 16 bit
1034	S_3 high 16 bit	1035	S ₃ low 16 bit
1036	PF₁ high 16 bit	1037	PF ₁ low 16 bit
1038	PF ₂ high 16 bit	1039	PF ₂ low 16 bit
1040	PF ₃ high 16 bit	1041	PF ₃ low 16 bit
	Fi₁ high 16 bit	1043	Fi ₁ low 16 bit
1044	Fi ₂ high 16 bit	1045	Fi ₂ low 16 bit
1046	Fi₃ high 16 bit	1047	Fi ₃ low 16 bit
1048	∑P high 16 bit	1049	
1050	∑Q high 16 bit	1051	∑Q low 16 bit
1052	∑S high 16 bit	1053	∑S low 16 bit
1054	∑PF high 16 bit	1055	∑PF low 16 bit
	∑Fi high 16 bit	1057	∑Fi low 16 bit
1058	f₁ high 16 bit	1059	f ₁ low 16 bit
1060	f ₂ high 16 bit	1061	f ₂ low 16 bit
1062	f₃ high 16 bit	1063	f ₃ low 16 bit
1064	ρ ₁₂ high 16 bit	1065	ρ ₁₂ low 16 bit
1066	ρ ₁₃ high 16 bit	1067	ρ ₁₃ low 16 bit
1068	+E ₁ 63–48 bit	1069	+E ₁ 47–32 bit
1070	+E ₁ 31–16 bit	1071	+E ₁ 15–0 bit

\bigcirc	DATCON

MB	Content	MB	Content
addr.		addr.	Contont
	+E ₂ 63–48 bit		+E ₂ 47–32 bit
	$+E_2 31-16$ bit		$+E_2 15-0 \text{ bit}$
-	$+E_3 63-48$ bit		$+E_3 47-32$ bit
	$+E_3 31-16$ bit		$+E_3 15-0$ bit
	-E ₁ 63–48 bit		-E ₁ 47–32 bit
	-E ₁ 31–16 bit		-E ₁ 15–0 bit
	-E ₂ 63–48 bit		-E ₂ 47–32 bit
	-E ₂ 31–16 bit		-E ₂ 15–0 bit
	-E ₃ 63–48 bit		-E ₃ 47–32 bit
	-E ₃ 31–16 bit		-E ₃ 15–0 bit
	+RE ₁ 63–48 bit		+RE ₁ 47–32 bit
	+RE ₁ 31–16 bit		$+RE_{1}$ 15–0 bit
	+RE ₂ 63–48 bit		+RE ₂ 47–32 bit
	+RE ₂ 31–16 bit		$+RE_2$ 15–0 bit
			+RE ₃ 47–32 bit
	+RE ₃ 31–16 bit		$+RE_3$ 15–0 bit
	-RE ₁ 63–48 bit		-RE ₁ 47–32 bit
			$-RE_1 15-0$ bit
	-RE ₂ 63–48 bit		-RE ₂ 47–32 bit
			$-RE_2$ 15–0 bit
	-RE ₃ 63–48 bit		-RE ₃ 47–32 bit
	-RE ₃ 31–16 bit		-RE ₃ 15–0 bit
	Ţ		∑+E47–32 bit
			∑+E 15–0 bit
	∑-E 63–48 bit		∑-E 47–32 bit
	Σ-E 31–16 bit		Σ-E 15–0 bit
	∑+RE 63–48 bit		∑+RE 47–32 bit
	Σ+RE 31–16 bit		
	Σ-RE 63–48 bit	1129	Σ-RE 47–32 bit
	Σ-RE 31–16 bit	1131	Σ-RE 15–0 bit
	$\sum P_{15 \text{ last}}$ high 16 bit	1133	$\sum P_{15 \text{ last}}$ low 16 bit
			$\sum P_{15 \text{ momentary}} \text{ low 16 bit}$
		1137	$\sum P_{15 \text{ prog}} \text{ low 16 bit}$
1138	$\sum P_{15 \text{ limit}}$ high 16 bit	1139	$\sum P_{15 \text{ limit}}$ low 16 bit
1140	¹ / ₄ time minut	1141	¹ / ₄ time minut
_	high 16 bit		low 16 bit
1142	1/4 time secundum	1143	1/4 time secundum
	high 16 bit	-	low 16 bit
1144	Errors high 16 bit	1145	Errors low 16 bit
) Energy registers unit:		
	0: Wh/VARh, 1: kWh/kVARh, 2: MWh/MVARh,		
	3: GWh/GVARh (Default: 0, Wh/VARh)		
			· · · · ·

Serial number, Nominal voltave, Nominal current, Voltage ratio, Current ratio

w 16 bit

L1 phase value

	nase value		
MB	Content	MB	Content
addr.		addr.	
2000	U _{eff 1} high 16 bit	2001	U _{eff 1} low 16 bit
2002	l _{eff 1} high 16 bit	2003	l _{eff 1} low 16 bit
2004	P₁ high 16 bit	2005	P ₁ low 16 bit
2006	Q₁ high 16 bit	2007	Q ₁ low 16 bit
2008	S₁ high 16 bit	2009	S ₁ low 16 bit
	PF₁ high 16 bit	2011	PF₁ low 16 bit
2012	Fi₁ high 16 bit	2013	Fi₁ low 16 bit
2014	f₁ high 16 bit	2015	f ₁ low 16 bit
2016	+E ₁ 63–48 bit	2017	+E ₁ 47–32 bit
2018	+E ₁ 31–16 bit	2019	+E ₁ 15–0 bit
2020	-E ₁ 63–48 bit	2021	-E ₁ 47–32 bit
2022	-E ₁ 31–16 bit	2023	-E ₁ 15–0 bit
2024	+RE ₁ 63–48 bit	2025	+RE ₁ 47–32 bit
2026	+RE ₁ 31–16 bit	2027	+RE ₁ 15–0 bit
2028	-RE ₁ 63–48 bit	2029	-RE ₁ 47–32 bit
2030	-RE ₁ 31–16 bit	2031	-RE ₁ 15–0 bit
2032	Errors high 16 bit	2033	Errors low 16 bit
2034	THD U ₁ high 16 bit	2035	THD U ₁ low 16 bit
2036	THD I ₁ high 16 bit	2037	THD I ₁ low 16 bit
2038	U1 fundamental	2039	U1 1. harmonic
2040	U1 2. harmonic	2041	U1 3. harmonic
2042	U1 4. harmonic	2043	U1 5. harmonic
2044	U1 6. harmonic	2045	U1 7. harmonic
2046	U1 8. harmonic	2047	U1 9. harmonic
2048	U1 10. harmonic	2049	U1 11. harmonic
2050	U1 12. harmonic	2051	U1 13. harmonic
2052	U1 14. harmonic	2053	U1 15. harmonic
2054	U1 16. harmonic	2055	U1 17. harmonic
2056	U1 18. harmonic	2057	U1 19. harmonic
2058	I1 fundamental	2059	I1 1. harmonic
2060	I1 2. harmonic	2061	I1 3. harmonic
2062	I1 4. harmonic	2063	I1 5. harmonic
2064	I1 6. harmonic	2065	I1 7. harmonic
2066	I1 8. harmonic	2067	I1 9. harmonic
2068	I1 10. harmonic	2069	I1 11. harmonic
2070	I1 12. harmonic	2071	I1 13. harmonic
2072	I1 14. harmonic	2073	I1 15. harmonic
2074	I1 16. harmonic	2075	I1 17. harmonic
2076	I1 18. harmonic	2077	I1 19. harmonic

ODATCON

L2 phase value

	nase value		
MB	Content	MB	Content
addr.		addr.	
	U _{eff 2} high 16 bit	3001	U _{eff 2} low 16 bit
3002	l _{eff 2} high 16 bit	3003	l _{eff 2} low 16 bit
3004	P ₂ high 16 bit	3005	P ₂ low 16 bit
3006	Q ₂ high 16 bit	3007	Q ₂ low 16 bit
3008	S ₂ high 16 bit	3009	S ₂ low 16 bit
3010	PF ₂ high 16 bit	3011	PF ₂ low 16 bit
3012	Fi ₂ high 16 bit	3013	Fi ₂ low 16 bit
3014	f ₂ high 16 bit	3015	f ₂ low 16 bit
3016	+E ₂ 63–48 bit	3017	+E ₂ 47–32 bit
3018	+E ₂ 31–16 bit	3019	+E ₂ 15–0 bit
3020	-E ₂ 63–48 bit	3021	-E ₂ 47–32 bit
3022	-E ₂ 31–16 bit	3023	-E ₂ 15–0 bit
3024	+RE ₂ 63–48 bit	3025	+RE ₂ 47–32 bit
3026	+RE ₂ 31–16 bit	3027	+RE ₂ 15–0 bit
3028	-RE ₂ 63–48 bit	3029	-RE ₂ 47–32 bit
3030	-RE ₂ 31–16 bit	3031	-RE ₂ 15–0 bit
3032	Errors high 16 bit	3033	Errors low 16 bit
3034	THD U ₂ high 16 bit	3035	THD U ₂ low 16 bit
3036	THD I ₂ high 16 bit	3037	THD I ₂ low 16 bit
3038	U2 fundamental	3039	U2 1. harmonic
3040	U2 2. harmonic	3041	U2 3. harmonic
3042	U2 4. harmonic	3043	U2 5. harmonic
3044	U2 6. harmonic	3045	U2 7. harmonic
3046	U2 8. harmonic	3047	U2 9. harmonic
3048	U2 10. harmonic	3049	U2 11. harmonic
3050	U2 12. harmonic	3051	U2 13. harmonic
3052	U2 14. harmonic	3053	U2 15. harmonic
3054	U2 16. harmonic	3055	U2 17. harmonic
3056	U2 18. harmonic	3057	U2 19. harmonic
3058	l2 fundamental	3059	I2 1. harmonic
3060	l2 2. harmonic	3061	I2 3. harmonic
3062	l2 4. harmonic	3063	I2 5. harmonic
3064	l2 6. harmonic	3065	I2 7. harmonic
3066	l2 8. harmonic	3067	I2 9. harmonic
3068	I2 10. harmonic	3069	l2 11. harmonic
3070	l2 12. harmonic	3071	I2 13. harmonic
3072	l2 14. harmonic	3073	l2 15. harmonic
	l2 16. harmonic	3075	I2 17. harmonic
3076	I2 18. harmonic	3077	l2 19. harmonic

ODATCON

L3 phase value

MB Content MB Content addr. addr. addr. addr. 4000 U _{eff 3} high 16 bit 4001 U _{eff 3} low 16 bit 4004 P ₃ high 16 bit 4005 P ₃ low 16 bit 4004 Q ₃ high 16 bit 4007 Q ₃ low 16 bit 4008 S ₃ high 16 bit 4001 P ₅ low 16 bit 4010 PF ₃ high 16 bit 4013 Fi ₃ low 16 bit 4012 Fl ₃ high 16 bit 4013 Fi ₃ low 16 bit 4014 f ₃ high 16 bit 4015 f ₃ low 16 bit 4014 F ₃ high 16 bit 4017 +E ₃ 47-32 bit 4018 +E ₃ 31-16 bit 4023 +E ₃ 47-32 bit 4020 +E ₃ 63-48 bit 4027 +RE ₃ 47-32 bit 4024 +RE ₃ 63-48 bit 4027 +RE ₃ 47-32 bit 4028 +RE ₃ 31-16 bit 4033 Errors low 16 bit 4032 Errors high 16 bit 4033 Errors low 16 bit 4034 THD U ₃ high 16 bit 4037 THD U ₃ low 16 bit 4034 G harmonic 4043 U3 5. harmonic 4044 U3 6. harmonic 40437 THD U ₃ lo	L3 pr	nase value		
4000 $U_{eff 3}$ high 16 bit 4001 $U_{eff 3}$ low 16 bit 4002 $I_{eff 3}$ high 16 bit 4003 $I_{eff 3}$ low 16 bit 4004 P ₃ high 16 bit 4007 Q_3 low 16 bit 4008 S ₃ high 16 bit 4007 Q_3 low 16 bit 4008 S ₃ high 16 bit 4017 P_3 low 16 bit 4010 PF ₃ high 16 bit 4013 Fi ₃ low 16 bit 4014 f ₃ high 16 bit 4015 f ₃ low 16 bit 4014 f ₃ high 16 bit 4017 $+E_3$ 47–32 bit 4018 +E ₃ 31–16 bit 4023 $+E_3$ 47–32 bit 4020 $+E_3$ 63–48 bit 4027 $+RE_3$ 47–32 bit 4024 +RE ₃ 63–48 bit 4027 $+RE_3$ 47–32 bit 4024 +RE ₃ 63–48 bit 4027 $+RE_3$ 15–0 bit 4038 RE ₃ 31–16 bit 4033 Errors low 16 bit 4039 -RE ₃ 47–32 bit 4030 -RE ₃ 47–32 bit 4030 RE ₃ 31–16 bit 4035 THD U ₃ low 16 bit 4032 Errors logh 16 bit 4035 THD U ₃ low 16 bit 4034	MB	Content	MB	Content
$4002 _{eff 3}$ high 16 bit $4003 _{eff 3}$ low 16 bit $4004 _{3}$ high 16 bit $4005 _{3}$ low 16 bit $4006 _{Q_3}$ high 16 bit $4007 _{Q_3}$ low 16 bit $4008 _{S_3}$ high 16 bit $4007 _{Q_3}$ low 16 bit $4010 _{F_3}$ high 16 bit $4011 _{F_3}$ low 16 bit $4012 _{F_3}$ high 16 bit $4011 _{F_3}$ low 16 bit $4014 _{f_3}$ high 16 bit $4015 _{F_3}$ low 16 bit $4014 _{f_3}$ high 16 bit $4017 _{F_3}$ low 16 bit $4014 _{f_3}$ high 16 bit $4017 _{F_3}$ low 16 bit $4014 _{f_3}$ high 16 bit $4017 _{F_3}$ low 16 bit $4014 _{F_3}$ high 16 bit $4017 _{F_3}$ low 16 bit $4014 _{F_3}$ high 16 bit $4011 _{F_3}$ low 16 bit $4014 _{F_3}$ high 16 bit $4011 _{F_3}$ low 16 bit $4020 _{F_3}$ a) 1-16 bit $4021 _{F_3}$ a) 1-20 bit $4022 _{F_3}$ a) 1-16 bit $4021 _{F_3}$ a) 1-20 bit $4022 _{F_3}$ a) 1-16 bit $4021 _{F_3}$ a) 1-30 bit $4022 _{F_3}$ a) 1-16 bit $4021 _{F_3}$ a) 1-30 bit $4024 _{F_8}$ a) 3-48 bit $4022 _{F_3}$ a) 1-30 bit $4024 _{F_8}$ a) 3-48 bit $4022 _{F_3}$ a) 1-30 bit $4024 _{F_8}$ a) 3-16 bit $4033 _{F_7}$ Big $4028 _{F_8}$ a	addr.		addr.	
4004 P_3 high 16 bit 4005 P_3 low 16 bit 4006 Q_3 high 16 bit 4007 Q_3 low 16 bit 4008 S_3 high 16 bit 4011 PF_3 low 16 bit 4012 Fi_3 high 16 bit 4011 PF_3 low 16 bit 4012 Fi_3 high 16 bit 4015 f_3 low 16 bit 4014 f_3 high 16 bit 4015 f_3 low 16 bit 4014 f_3 high 16 bit 4017 $+E_3$ 47–32 bit 4018 $+E_3$ 31–16 bit 4019 $+E_3$ 15–0 bit 4020 $-E_3$ 63–48 bit 4021 $+E_3$ 47–32 bit 4024 $+RE_3$ 63–48 bit 4025 $+RE_3$ 47–32 bit 4026 $+RE_3$ 31–16 bit 4027 $+RE_3$ 15–0 bit 4028 $-RE_3$ 63–48 bit 4029 $-RE_3$ 47–32 bit 4030 $-RE_3$ 31–16 bit 4033 Errors low 16 bit 4032 Errors high 16 bit 4035 THD U_3 low 16 bit 4033 U3 fundamental 4039 U3 1. harmonic 4040 U3 2. harmonic 4041 U3 3. harmonic 4044 U3 6. harmonic 4047 U3 9. harmonic 4044 U3 6. harmonic 4051 U3 13. harmonic 4044 U3 10. harmonic 4051 U3 13. harmonic <			4001	U _{eff 3} low 16 bit
4006 Q_3 high 16 bit 4007 Q_3 low 16 bit 4008 S_3 high 16 bit 4009 S_3 low 16 bit 4010 PF_3 high 16 bit 4011 PF_3 low 16 bit 4014 f_3 high 16 bit 4015 f_3 low 16 bit 4014 f_3 high 16 bit 4017 $+E_3$ 47–32 bit 4018 $+E_3$ 63–48 bit 4017 $+E_3$ 47–32 bit 4018 $+E_3$ 15–0 bit 4020 $-E_3$ 63–48 bit 4021 4020 $-E_3$ 63–48 bit 4021 $-E_3$ 47–32 bit 4022 $-E_3$ 31–16 bit 4023 $+E_3$ 15–0 bit 4024 $+RE_3$ 63–48 bit 4027 $+RE_3$ 15–0 bit 4028 $-RE_3$ 63–48 bit 4029 $+RE_3$ 15–0 bit 4030 $-RE_3$ 15–0 bit 4032 $+RE_3$ 15–0 bit 4032 $Errors high 16$ bit 4033 $Errors low 16$ bit 4034 THD U_3 high 16 bit 4035 THD U_3 low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 4. harmonic 4041 U3 3. harmonic 4044	4002	l _{eff 3} high 16 bit	4003	l _{eff 3} low 16 bit
4008 S ₃ high 16 bit 4009 S ₃ low 16 bit 4010 PF ₃ high 16 bit 4011 PF ₃ low 16 bit 4012 Fi ₃ high 16 bit 4013 Fi ₃ low 16 bit 4014 f ₃ high 16 bit 4017 +E ₃ 10w 16 bit 4018 +E ₃ 63–48 bit 4017 +E ₃ 47–32 bit 4018 +E ₃ 31–16 bit 4021 -E ₃ 47–32 bit 4020 -E ₃ 63–48 bit 4021 -E ₃ 47–32 bit 4022 -E ₃ 31–16 bit 4023 -E ₃ 15–0 bit 4024 +RE ₃ 63–48 bit 4025 +RE ₃ 47–32 bit 4026 +RE ₃ 31–16 bit 4027 +RE ₃ 15–0 bit 4028 -RE ₃ 63–48 bit 4029 -RE ₃ 47–32 bit 4030 RE ₃ 63–48 bit 4029 -RE ₃ 47–32 bit 4030 RE ₃ 31–16 bit 4031 -RE ₃ 15–0 bit 4032 Errors high 16 bit 4035 THD U ₃ low 16 bit 4038 HTHD U ₃ high 16 bit 4037 THD U ₃ low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4044 U3 6. harmonic <td< td=""><td>4004</td><td>P₃ high 16 bit</td><td>4005</td><td>P₃ low 16 bit</td></td<>	4004	P₃ high 16 bit	4005	P ₃ low 16 bit
4010 PF_3 high 16 bit 4011 PF_3 low 16 bit 4012 Fi_3 high 16 bit 4013 Fi_3 low 16 bit 4014 f_3 high 16 bit 4015 f_3 low 16 bit 4016 $+E_3$ 63–48 bit 4017 $+E_3$ 47–32 bit 4018 $+E_3$ 31–16 bit 4019 $+E_3$ 47–32 bit 4020 $-E_3$ 63–48 bit 4021 $-E_3$ 47–32 bit 4022 $-E_3$ 31–16 bit 4023 $-E_3$ 47–32 bit 4024 $+RE_3$ 63–48 bit 4027 $+RE_3$ 15–0 bit 4026 $+RE_3$ 63–48 bit 4029 $-RE_3$ 47–32 bit 4028 $-RE_3$ 63–48 bit 4029 $-RE_3$ 47–32 bit 4030 $-RE_3$ 31–16 bit 4031 $-RE_3$ 15–0 bit 4031 $-RE_3$ 15–0 bit 4032 Errors low 16 bit 4032 Errors high 16 bit 4037 THD U_3 low 16 bit 4034 THD U_3 high 16 bit 4037 THD I_3 low 16 bit 4034 Ja harmonic 4041 U3 a. harmonic 4040 U3 a. harmonic 4041 U3 a. harmonic 4042 U3 4. harmonic	4006	Q₃ high 16 bit	4007	Q ₃ low 16 bit
4012 Fi ₃ high 16 bit 4013 Fi ₃ low 16 bit 4014 f_3 high 16 bit 4015 f_3 low 16 bit 4016 +E ₃ 63-48 bit 4017 +E ₃ 47-32 bit 4018 +E ₃ 31-16 bit 4019 +E ₃ 47-32 bit 4020 -E ₃ 63-48 bit 4021 -E ₃ 47-32 bit 4022 -E ₃ 31-16 bit 4023 -E ₃ 47-32 bit 4024 +RE ₃ 63-48 bit 4027 +RE ₃ 47-32 bit 4026 +RE ₃ 63-48 bit 4029 -RE ₃ 47-32 bit 4028 -RE ₃ 63-48 bit 4029 -RE ₃ 47-32 bit 4030 -RE ₃ 63-48 bit 4031 -RE ₃ 15-0 bit 4031 -RE ₃ 15-0 bit 4032 Errors low 16 bit 4032 Errors high 16 bit 4035 THD U ₃ low 16 bit 4034 THD U ₃ high 16 bit 4037 THD I ₃ low 16 bit 4036 THD U ₃ high 16 bit 4037 THD I ₃ low 16 bit 4038 J fundamental 4039 U3 1. harmonic 4044 U3 4. harmonic 40441 U3 3. harmonic 4044 U3 6. harmonic	4008	S₃ high 16 bit	4009	S ₃ low 16 bit
4014 f_3 high 16 bit 4015 f_3 low 16 bit 4016 $+E_3$ 63–48 bit 4017 $+E_3$ 47–32 bit 4018 $+E_3$ 31–16 bit 4019 $+E_3$ 15–0 bit 4020 $-E_3$ 63–48 bit 4021 $-E_3$ 47–32 bit 4022 $-E_3$ 31–16 bit 4023 $+E_3$ 47–32 bit 4024 $+RE_3$ 63–48 bit 4025 $+RE_3$ 47–32 bit 4026 $+RE_3$ 63–48 bit 4029 $-RE_3$ 47–32 bit 4028 $-RE_3$ 63–48 bit 4029 $-RE_3$ 47–32 bit 4030 $-RE_3$ 31–16 bit 4031 $-RE_3$ 15–0 bit 4030 $-RE_3$ 31–16 bit 4031 $-RE_3$ 15–0 bit 4030 $-RE_3$ 31–16 bit 4033 Errors low 16 bit 4032 Errors high 16 bit 4037 THD U_3 low 16 bit 4036 THD U_3 high 16 bit 4037 THD I_3 low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 2. harmonic 40441 U3 3. harmonic 4044 U3 6. harmonic 4047 U3 9. harmonic 4044 U3 6. harmonic <td>4010</td> <td>PF₃ high 16 bit</td> <td>4011</td> <td>PF_3 low 16 bit</td>	4010	PF₃ high 16 bit	4011	PF_3 low 16 bit
4016 $+E_3$ 63-48 bit 4017 $+E_3$ 47-32 bit 4018 $+E_3$ 31-16 bit 4019 $+E_3$ 15-0 bit 4020 $-E_3$ 63-48 bit 4021 $-E_3$ 47-32 bit 4022 $-E_3$ 31-16 bit 4023 $-E_3$ 47-32 bit 4024 $+RE_3$ 63-48 bit 4027 $+RE_3$ 15-0 bit 4028 $-RE_3$ 63-48 bit 4029 $-RE_3$ 47-32 bit 4030 $-RE_3$ 31-16 bit 4031 $-RE_3$ 15-0 bit 4030 $-RE_3$ 31-16 bit 4033 Errors low 16 bit 4033 Errors high 16 bit 4035 THD U_3 low 16 bit 4034 THD U_3 high 16 bit 4037 THD I_3 low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 harmonic 4044 <td< td=""><td>4012</td><td>Fi₃ high 16 bit</td><td>4013</td><td>Fi₃ low 16 bit</td></td<>	4012	Fi₃ high 16 bit	4013	Fi ₃ low 16 bit
4018 +E ₃ 31-16 bit 4019 +E ₃ 15-0 bit 4020 -E ₃ 63-48 bit 4021 -E ₃ 47-32 bit 4022 -E ₃ 31-16 bit 4023 +E ₃ 47-32 bit 4024 +RE ₃ 63-48 bit 4027 +RE ₃ 47-32 bit 4026 +RE ₃ 63-48 bit 4027 +RE ₃ 47-32 bit 4028 -RE ₃ 63-48 bit 4029 -RE ₃ 47-32 bit 4030 -RE ₃ 31-16 bit 4031 -RE ₃ 15-0 bit 4032 Errors high 16 bit 4033 Errors low 16 bit 4034 THD U ₃ high 16 bit 4037 THD U ₃ low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 harmonic 4044 U3 harmonic 4045 U3 7. harmonic 4044 <td>4014</td> <td>f₃ high 16 bit</td> <td>4015</td> <td>f₃ low 16 bit</td>	4014	f ₃ high 16 bit	4015	f ₃ low 16 bit
4020 E_3 63-48 bit 4021 $-E_3$ 47-32 bit 4022 E_3 31-16 bit 4023 $-E_3$ 15-0 bit 4024 $+RE_3$ 63-48 bit 4025 $+RE_3$ 47-32 bit 4026 $+RE_3$ 63-48 bit 4027 $+RE_3$ 15-0 bit 4028 $-RE_3$ 63-48 bit 4029 $-RE_3$ 47-32 bit 4030 $-RE_3$ 31-16 bit 4031 $-RE_3$ 47-32 bit 4030 $-RE_3$ 31-16 bit 4031 $-RE_3$ 47-32 bit 4032 Errors high 16 bit 4033 Errors low 16 bit 4034 U3 high 16 bit 4037 THD I_3 low 16 bit 4038 U3 fundamental 4039 U3 harmonic 4044 U3 harmonic 4044 U3 harmonic 4044 U3 harmonic 4047 U3 harmonic	4016	+E ₃ 63–48 bit	4017	+E ₃ 47–32 bit
4020 E_3 63-48 bit 4021 $-E_3$ 47-32 bit 4022 E_3 31-16 bit 4023 $-E_3$ 15-0 bit 4024 $+RE_3$ 63-48 bit 4025 $+RE_3$ 47-32 bit 4026 $+RE_3$ 63-48 bit 4027 $+RE_3$ 15-0 bit 4028 $-RE_3$ 63-48 bit 4029 $-RE_3$ 47-32 bit 4030 $-RE_3$ 31-16 bit 4031 $-RE_3$ 47-32 bit 4030 $-RE_3$ 31-16 bit 4031 $-RE_3$ 47-32 bit 4032 Errors high 16 bit 4033 Errors low 16 bit 4034 U3 high 16 bit 4037 THD I_3 low 16 bit 4038 U3 fundamental 4039 U3 harmonic 4044 U3 harmonic 4044 U3 harmonic 4044 U3 harmonic 4047 U3 harmonic	4018	+E ₃ 31–16 bit	4019	+E ₃ 15–0 bit
$4022 - E_3 31 - 16$ bit $4023 - E_3 15 - 0$ bit $4024 + RE_3 63 - 48$ bit $4025 + RE_3 47 - 32$ bit $4026 + RE_3 31 - 16$ bit $4027 + RE_3 15 - 0$ bit $4023 - RE_3 63 - 48$ bit $4029 - RE_3 47 - 32$ bit $4030 - RE_3 31 - 16$ bit $4031 - RE_3 15 - 0$ bit $4030 - RE_3 31 - 16$ bit $4031 - RE_3 15 - 0$ bit $4030 - RE_3 31 - 16$ bit $4031 - RE_3 15 - 0$ bit $4032 = rrors$ high 16 bit $4033 = rrors$ low 16 bit $4034 = THD U_3$ high 16 bit $4037 = THD U_3$ low 16 bit $4036 = THD I_3$ high 16 bit $4037 = THD U_3$ low 16 bit $4038 = U3$ fundamental $4039 = U3$ $4040 = U3$ 2 . harmonic $4041 = U3$ $4044 = U3$ 4 . harmonic $4043 = U3$ $4044 = U3$ 4 . harmonic $4045 = U3$ $4044 = U3$ 4 . harmonic $4047 = U3$ $4044 = U3$ 6 . harmonic $4047 = U3$ $4044 = U3$ 6 . harmonic $4047 = U3$ $4044 = U3$ 6 . harmonic $4047 = U3$ $4044 = U3$ 6 . harmonic $4047 = U3$ $4044 = U3$ 6 . harmonic $4047 = U3$ <			4021	-E ₃ 47–32 bit
$4026 + RE_3 31 - 16$ bit $4027 + RE_3 15 - 0$ bit $4028 - RE_3 63 - 48$ bit $4029 - RE_3 47 - 32$ bit $4030 - RE_3 31 - 16$ bit $4031 - RE_3 15 - 0$ bit 4032 Errors high 16 bit $4033 = 15 - 0$ bit $4034 = 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 100000 - 10000 - 10000 - 10000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 1000000 - 1000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 100000000$				
4028 -RE ₃ 63-48 bit 4029 -RE ₃ 47-32 bit 4030 -RE ₃ 31-16 bit 4031 -RE ₃ 15-0 bit 4032 Errors high 16 bit 4033 Errors low 16 bit 4034 THD U ₃ high 16 bit 4035 THD U ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 2. harmonic 4041 U3 3. harmonic 4042 U3 4. harmonic 4043 U3 5. harmonic 4044 U3 6. harmonic 4047 U3 9. harmonic 4044 U3 6. harmonic 4047 U3 9. harmonic 4044 U3 6. harmonic 4051 U3 13. harmonic 4044 U3 10. harmonic 4051 U3 13. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4055 U3 17. harmonic 4054 U3 16. harmonic 4057 U3 19. harmonic 4054 U3 18. harmonic 4057 U3 19. harmonic 4054 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic	4024	+RE ₃ 63–48 bit	4025	+RE ₃ 47–32 bit
4028 -RE ₃ 63-48 bit 4029 -RE ₃ 47-32 bit 4030 -RE ₃ 31-16 bit 4031 -RE ₃ 15-0 bit 4032 Errors high 16 bit 4033 Errors low 16 bit 4034 THD U ₃ high 16 bit 4035 THD U ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 2. harmonic 4041 U3 3. harmonic 4042 U3 4. harmonic 4043 U3 5. harmonic 4044 U3 6. harmonic 4047 U3 9. harmonic 4044 U3 6. harmonic 4047 U3 9. harmonic 4044 U3 6. harmonic 4051 U3 13. harmonic 4044 U3 10. harmonic 4051 U3 13. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4055 U3 17. harmonic 4054 U3 16. harmonic 4057 U3 19. harmonic 4054 U3 18. harmonic 4057 U3 19. harmonic 4054 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic	4026	+RE ₃ 31–16 bit	4027	+RE ₃ 15–0 bit
$4030 - RE_3 31 - 16$ bit $4031 - RE_3 15 - 0$ bit 4032 Errors high 16 bit 4033 Errors low 16 bit 4034 THD U ₃ high 16 bit 4035 THD U ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4036 THD I ₃ high 16 bit 4037 THD I ₃ low 16 bit 4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 2. harmonic 4041 U3 3. harmonic 4042 U3 4. harmonic 4043 U3 5. harmonic 4044 U3 6. harmonic 4047 U3 9. harmonic 4046 U3 8. harmonic 4047 U3 9. harmonic 4048 U3 10. harmonic 4049 U3 11. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4055 U3 17. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4054 U3 16. harmonic 4059 I2 1. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4067 I2 9. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4074 I2 16. harmonic 4075 I2 17. harmonic		-	4029	
4032Errors high 16 bit4033Errors low 16 bit4034THD U_3 high 16 bit4035THD U_3 low 16 bit4036THD I_3 high 16 bit4037THD I_3 low 16 bit4038U3 fundamental4039U3 1. harmonic4040U3 2. harmonic4041U3 3. harmonic4042U3 4. harmonic4043U3 5. harmonic4044U3 6. harmonic4045U3 7. harmonic4044U3 6. harmonic4047U3 9. harmonic4044U3 8. harmonic4047U3 9. harmonic4048U3 10. harmonic4049U3 11. harmonic4050U3 12. harmonic4051U3 13. harmonic4052U3 14. harmonic4053U3 15. harmonic4054U3 16. harmonic4055U3 17. harmonic4056U3 18. harmonic4057U3 19. harmonic4058I2 fundamental4059I2 1. harmonic4060I2 2. harmonic4063I2 5. harmonic4064I2 6. harmonic4065I2 7. harmonic4066I2 8. harmonic4067I2 9. harmonic4068I2 10. harmonic4069I2 11. harmonic4070I2 12. harmonic4071I2 13. harmonic4072I2 14. harmonic4073I2 17. harmonic4074I2 16. harmonic4075I2 17. harmonic			4031	
4036 THD I_3 high 16 bit4037 THD I_3 low 16 bit4038 U3 fundamental4039U3 1. harmonic4040 U3 2. harmonic4041U3 3. harmonic4042 U3 4. harmonic4043U3 5. harmonic4044 U3 6. harmonic4045U3 7. harmonic4046 U3 8. harmonic4047U3 9. harmonic4048 U3 10. harmonic4049U3 11. harmonic4050 U3 12. harmonic4051U3 13. harmonic4052 U3 14. harmonic4053U3 15. harmonic4054 U3 16. harmonic4055U3 17. harmonic4056 U3 18. harmonic4057U3 19. harmonic4058 I2 fundamental4059I2 1. harmonic4060 I2 2. harmonic4063I2 5. harmonic4064 I2 6. harmonic4063I2 5. harmonic4068 I2 10. harmonic4067I2 9. harmonic4068 I2 10. harmonic4067I2 9. harmonic4070 I2 12. harmonic4071I2 13. harmonic4072 I2 14. harmonic4073I2 15. harmonic4074 I2 16. harmonic4075I2 17. harmonic			4033	
4036 THD I_3 high 16 bit4037 THD I_3 low 16 bit4038 U3 fundamental4039U3 1. harmonic4040 U3 2. harmonic4041U3 3. harmonic4042 U3 4. harmonic4043U3 5. harmonic4044 U3 6. harmonic4045U3 7. harmonic4046 U3 8. harmonic4047U3 9. harmonic4048 U3 10. harmonic4049U3 11. harmonic4050 U3 12. harmonic4051U3 13. harmonic4052 U3 14. harmonic4053U3 15. harmonic4054 U3 16. harmonic4055U3 17. harmonic4056 U3 18. harmonic4057U3 19. harmonic4058 I2 fundamental4059I2 1. harmonic4060 I2 2. harmonic4063I2 5. harmonic4064 I2 6. harmonic4063I2 5. harmonic4068 I2 10. harmonic4067I2 9. harmonic4068 I2 10. harmonic4067I2 9. harmonic4070 I2 12. harmonic4071I2 13. harmonic4072 I2 14. harmonic4073I2 15. harmonic4074 I2 16. harmonic4075I2 17. harmonic			4035	THD U_3 low 16 bit
4038 U3 fundamental 4039 U3 1. harmonic 4040 U3 2. harmonic 4041 U3 3. harmonic 4042 U3 4. harmonic 4043 U3 5. harmonic 4044 U3 6. harmonic 4045 U3 7. harmonic 4046 U3 8. harmonic 4047 U3 9. harmonic 4046 U3 8. harmonic 4047 U3 9. harmonic 4048 U3 10. harmonic 4049 U3 11. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4050 U3 12. harmonic 4053 U3 15. harmonic 4052 U3 14. harmonic 4053 U3 15. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4054 U3 18. harmonic 4057 U3 19. harmonic 4056 U3 18. harmonic 4059 I2 1. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic <td></td> <td></td> <td>4037</td> <td>THD I₃ low 16 bit</td>			4037	THD I ₃ low 16 bit
4042 U3 4. harmonic 4043 U3 5. harmonic 4044 U3 6. harmonic 4045 U3 7. harmonic 4046 U3 8. harmonic 4047 U3 9. harmonic 4048 U3 10. harmonic 4049 U3 11. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4053 U3 15. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4056 U3 18. harmonic 4057 U3 19. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4060 I2 4. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4067 I2 9. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4072 I2 14. harmonic 4075 I2 17. harmonic			4039	U3 1. harmonic
4044 U3 6. harmonic 4045 U3 7. harmonic 4046 U3 8. harmonic 4047 U3 9. harmonic 4048 U3 10. harmonic 4049 U3 11. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4053 U3 15. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4056 U3 18. harmonic 4057 U3 19. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4060 I2 4. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4065 I2 7. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4067 I2 9. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4074 I2 16. harmonic 4075 I2 17. harmonic	4040	U3 2. harmonic	4041	U3 3. harmonic
4046 U3 8. harmonic 4047 U3 9. harmonic 4048 U3 10. harmonic 4049 U3 11. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4053 U3 15. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4056 U3 18. harmonic 4057 U3 19. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4062 I2 4. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4065 I2 7. harmonic 4066 I2 8. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4069 I2 11. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4074 I2 16. harmonic 4075 I2 17. harmonic	4042	U3 4. harmonic	4043	U3 5. harmonic
4048 U3 10. harmonic 4049 U3 11. harmonic 4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4053 U3 15. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4056 U3 18. harmonic 4057 U3 19. harmonic 4058 12 fundamental 4059 12 1. harmonic 4060 12 2. harmonic 4061 12 3. harmonic 4060 12 2. harmonic 4063 12 5. harmonic 4061 12 3. harmonic 4063 12 5. harmonic 4062 12 4. harmonic 4063 12 7. harmonic 4064 12 6. harmonic 4065 12 7. harmonic 4064 12 6. harmonic 4067 12 9. harmonic 4068 12 10. harmonic 4069 12 11. harmonic 4070 12 12. harmonic	4044	U3 6. harmonic	4045	U3 7. harmonic
4050 U3 12. harmonic 4051 U3 13. harmonic 4052 U3 14. harmonic 4053 U3 15. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4056 U3 18. harmonic 4057 U3 19. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4060 I2 2. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4065 I2 7. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4067 I2 9. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4074 I2 16. harmonic 4075	4046	U3 8. harmonic	4047	U3 9. harmonic
4052 U3 14. harmonic 4053 U3 15. harmonic 4054 U3 16. harmonic 4055 U3 17. harmonic 4056 U3 18. harmonic 4057 U3 19. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4060 I2 2. harmonic 4063 I2 5. harmonic 4062 I2 4. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4065 I2 7. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4067 I2 9. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4074 I2 16. harmonic 4075 I2 17. harmonic	4048	U3 10. harmonic	4049	U3 11. harmonic
4054 U3 16. harmonic 4055 U3 17. harmonic 4056 U3 18. harmonic 4057 U3 19. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4062 I2 4. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4065 I2 7. harmonic 4064 I2 6. harmonic 4065 I2 7. harmonic 4064 I2 6. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4069 I2 11. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4074 I2 16. harmonic 4075 I2 17. harmonic	4050	U3 12. harmonic	4051	U3 13. harmonic
4056 U3 18. harmonic 4057 U3 19. harmonic 4058 I2 fundamental 4059 I2 1. harmonic 4060 I2 2. harmonic 4061 I2 3. harmonic 4062 I2 4. harmonic 4063 I2 5. harmonic 4064 I2 6. harmonic 4065 I2 7. harmonic 4066 I2 8. harmonic 4067 I2 9. harmonic 4068 I2 10. harmonic 4069 I2 11. harmonic 4070 I2 12. harmonic 4071 I2 13. harmonic 4072 I2 14. harmonic 4073 I2 15. harmonic 4074 I2 16. harmonic 4075 I2 17. harmonic	4052	U3 14. harmonic	4053	U3 15. harmonic
4058I2 fundamental4059I2 1. harmonic4060I2 2. harmonic4061I2 3. harmonic4062I2 4. harmonic4063I2 5. harmonic4064I2 6. harmonic4065I2 7. harmonic4066I2 8. harmonic4067I2 9. harmonic4068I2 10. harmonic4069I2 11. harmonic4070I2 12. harmonic4071I2 13. harmonic4072I2 14. harmonic4073I2 15. harmonic4074I2 16. harmonic4075I2 17. harmonic	4054	U3 16. harmonic	4055	U3 17. harmonic
4060I2 2. harmonic4061I2 3. harmonic4062I2 4. harmonic4063I2 5. harmonic4064I2 6. harmonic4065I2 7. harmonic4066I2 8. harmonic4067I2 9. harmonic4068I2 10. harmonic4069I2 11. harmonic4070I2 12. harmonic4071I2 13. harmonic4072I2 14. harmonic4073I2 15. harmonic4074I2 16. harmonic4075I2 17. harmonic	4056	U3 18. harmonic	4057	U3 19. harmonic
4062I2 4. harmonic4063I2 5. harmonic4064I2 6. harmonic4065I2 7. harmonic4066I2 8. harmonic4067I2 9. harmonic4068I2 10. harmonic4069I2 11. harmonic4070I2 12. harmonic4071I2 13. harmonic4072I2 14. harmonic4073I2 15. harmonic4074I2 16. harmonic4075I2 17. harmonic	4058	l2 fundamental	4059	I2 1. harmonic
4064I2 6. harmonic4065I2 7. harmonic4066I2 8. harmonic4067I2 9. harmonic4068I2 10. harmonic4069I2 11. harmonic4070I2 12. harmonic4071I2 13. harmonic4072I2 14. harmonic4073I2 15. harmonic4074I2 16. harmonic4075I2 17. harmonic	4060	l2 2. harmonic	4061	I2 3. harmonic
4066I2 8. harmonic4067I2 9. harmonic4068I2 10. harmonic4069I2 11. harmonic4070I2 12. harmonic4071I2 13. harmonic4072I2 14. harmonic4073I2 15. harmonic4074I2 16. harmonic4075I2 17. harmonic	4062	l2 4. harmonic	4063	I2 5. harmonic
4068I210. harmonic4069I211. harmonic4070I212. harmonic4071I213. harmonic4072I214. harmonic4073I215. harmonic4074I216. harmonic4075I217. harmonic	4064	l2 6. harmonic	4065	I2 7. harmonic
4068I210. harmonic4069I211. harmonic4070I212. harmonic4071I213. harmonic4072I214. harmonic4073I215. harmonic4074I216. harmonic4075I217. harmonic	4066	l2 8. harmonic	4067	I2 9. harmonic
4070I2 12. harmonic4071I2 13. harmonic4072I2 14. harmonic4073I2 15. harmonic4074I2 16. harmonic4075I2 17. harmonic				I2 11. harmonic
4072I214. harmonic4073I215. harmonic4074I216. harmonic4075I217. harmonic	4070	l2 12. harmonic	4071	I2 13. harmonic
	4072	l2 14. harmonic	4073	I2 15. harmonic
4076 2 18. harmonic 4077 2 19. harmonic	4074	l2 16. harmonic	4075	I2 17. harmonic
	4076	12 18. harmonic	4077	l2 19. harmonic

Custom register range

MB Content	MB	Content
addr.	addr.	Contont
4096 U _{eff average} high 16 bit	4097	U _{eff average} low 16 bit
4098 U _{eff 1} high 16 bit	4099	U _{eff 1} low 16 bit
4100 U _{eff 2} high 16 bit	4101	U _{eff 2} low 16 bit
$4102 U_{eff 3}$ high 16 bit	4103	U _{eff 3} low 16 bit
4104 U _{eff 12} high 16 bit	4105	U _{eff 12} low 16 bit
4106 U _{eff 23} high 16 bit	4107	U _{eff 23} low 16 bit
4108 U _{eff 31} high 16 bit	4109	U _{eff 31} low 16 bit
4110 l _{eff average} high 16 bit	4111	l _{eff average} low 16 bit
4112 l _{eff 1} high 16 bit	4113	I _{eff 1} low 16 bit
4114 l _{eff 2} high 16 bit	4115	l _{eff 2} low 16 bit
4116 l _{eff 3} high 16 bit	4117	I _{eff 3} low 16 bit
4118	4119	∑PF low 16 bit
4120 PF₁ high 16 bit	4121	PF₁ low 16 bit
4122 PF ₂ high 16 bit	4123	PF ₂ low 16 bit
4124 PF ₃ high 16 bit	4125	PF ₃ low 16 bit
4126 THD U₁ high 16 bit	4127	THD U ₁ low 16 bit
4128 THD U ₂ high 16 bit	4129	THD U ₂ low 16 bit
4130 THD U ₃ high 16 bit	4131	THD U ₃ low 16 bit
4132 THD I₁ high 16 bit	4133	THD I ₁ low 16 bit
4134 THD I ₂ high 16 bit	4135	THD I ₂ low 16 bit
4136 THD I₃ high 16 bit	4137	THD I ₃ low 16 bit
4138∑Q high 16 bit	4139	∑Q low 16 bit
4140	4141	∑S low 16 bit
4142∑P high 16 bit	4143	∑P low 16 bit
4144 P₁ high 16 bit	4145	P ₁ low 16 bit
4146 P ₂ high 16 bit	4147	P ₂ low 16 bit
4148 P ₃ high 16 bit	4149	P ₃ low 16 bit
4150 ρ ₁₂ high 16 bit	4151	ρ ₁₂ low 16 bit
4152 ρ ₁₃ high 16 bit	4153	ρ ₁₃ low 16 bit
4154 ∑P _{15 mom} high 16 bit	4155	∑P _{15 mom} low 16 bit
4156 <u>∑</u> –E high 16 bit	4157	∑–E low 16 bit
4158∑+E high 16 bit	4159	∑+E low 16 bit
4160 Errors high 16 bit	4161	Errors low 16 bit
4162 f ₁ high 16 bit	4163	f₁ low 16 bit
4164 f ₂ high 16 bit	4165	f ₂ low 16 bit
4166 f_3 high 16 bit	4167	f ₃ low 16 bit

Three phase value

-		1	1
MB	Content	MB	Content
addr.		addr.	
5000	∑P high 16 bit	5001	∑P low 16 bit
5002	∑Q high 16 bit	5003	∑Q low 16 bit
5004	∑S high 16 bit	5005	∑S low 16 bit
5006	∑PF high 16 bit	5007	∑PF low 16 bit
5008	∑Fi high 16 bit	5009	∑Fi low 16 bit
5010	∑+E 63–48 bit	5011	∑+E47–32 bit
5012	∑+E 31–16 bit	5013	∑+E 15–0 bit
5014	∑-E 63–48 bit	5015	∑-E 47–32 bit
5016	∑-E 31–16 bit	5017	∑-E 15–0 bit
5018	∑+RE 63–48 bit	5019	∑+RE 47–32 bit
5020	∑+RE 31–16 bit	5021	∑+RE 15–0 bit
5022	∑-RE 63–48 bit	5023	∑-RE 47–32 bit
5024	∑-RE 31–16 bit	5025	∑-RE 15–0 bit
5026	Errors high 16 bit	5027	Errors low 16 bit

Powers , Energies	(readable as	32 bit value)
--------------------------	--------------	---------------

		1	-
	Content		Content
addr.	D high 40 hit	addr.	
	P_1 high 16 bit	1	P_1 low 16 bit
	Q₁ high 16 bit	1	Q_1 low 16 bit
	P_2 high 16 bit		P_2 low 16 bit
	Q_2 high 16 bit		Q_2 low 16 bit
	P_3 high 16 bit		P_3 low 16 bit
	Q_3 high 16 bit		Q_3 low 16 bit
	ΣP high 16 bit		$\sum P \text{ low 16 bit}$
	∑Q high 16 bit		$\sum Q \text{ low 16 bit}$
	+E ₁ 63–48 bit		+E ₁ 47–32 bit
	+E ₁ 31–16 bit		+E ₁ 15–0 bit
	-E ₁ 63–48 bit		-E ₁ 47–32 bit
	-E ₁ 31–16 bit	-	-E ₁ 15–0 bit
	+RE ₁ 63–48 bit		+RE ₁ 47–32 bit
6026	+RE ₁ 31–16 bit		+RE ₁ 15–0 bit
6028	-RE ₁ 63–48 bit		-RE ₁ 47–32 bit
6030	-RE₁ 31–16 bit	6031	-RE₁ 15–0 bit
6032	+E ₂ 63–48 bit	6033	+E ₂ 47–32 bit
6034	+E ₂ 31–16 bit	6035	+E ₂ 15–0 bit
6036	-E ₂ 63–48 bit	6037	-E ₂ 47–32 bit
6038	-E ₂ 31–16 bit	6039	-E ₂ 15–0 bit
6040	+RE ₂ 63–48 bit	6041	+RE ₂ 47–32 bit
6042	+RE ₂ 31–16 bit	6043	+RE ₂ 15–0 bit
6044	-RE ₂ 63–48 bit	6045	-RE ₂ 47–32 bit
6046	-RE ₂ 31–16 bit	6047	-RE ₂ 15–0 bit
6048	+E ₃ 63–48 bit	6049	+E ₃ 47–32 bit
6050	+E ₃ 31–16 bit	6051	+E ₃ 15–0 bit
	-E ₃ 63–48 bit		-E ₃ 47–32 bit
	-E ₃ 31–16 bit		-E ₃ 15–0 bit
	+RE ₃ 63–48 bit	6057	+RE ₃ 47–32 bit
	+RE ₃ 31–16 bit		+RE ₃ 15–0 bit
	-RE ₃ 63–48 bit		-RE ₃ 47–32 bit
	-RE ₃ 31–16 bit		-RE ₃ 15–0 bit
	∑+E 63–48 bit		∑+E47–32 bit
	Σ+E 31–16 bit		
	Σ-E 63–48 bit		Σ-E 47–32 bit
	Σ -E 31–16 bit		Σ -E 15–0 bit
	Σ +RE 63–48 bit		Σ +RE 47–32 bit
	Σ +RE 31–16 bit		Σ +RE 15–0 bit
	Σ -RE 63–48 bit		Σ -RE 47–32 bit
	Σ -RE 31–16 bit		Σ -RE 15–0 bit
00.0			

Energies (kWh, kVARh)

	Content	MB	Content
addr.		addr.	
	+E ₁ 63–48 bit		+E ₁ 47–32 bit
	$+E_1 31-16$ bit		$+E_1 15-0$ bit
	$+E_2 63-48$ bit		$+E_2 47-32$ bit
	$+E_2 31-16$ bit		$+E_2 15-0$ bit
	$+E_3 63-48$ bit		$+E_3 47-32$ bit
	$+E_3 31-16$ bit		$+E_3 15-0$ bit
	$-E_1 63-48$ bit		$-E_1 47-32$ bit
	-E ₁ 31–16 bit		-E ₁ 15–0 bit
	$-E_2 63-48$ bit		$-E_2 47-32$ bit
	$-E_2 31-16$ bit	-	$-E_2 15-0$ bit
	-E ₃ 63–48 bit		-E ₃ 47–32 bit
	-E ₃ 31–16 bit	1	-E ₃ 15–0 bit
	+RE ₁ 63–48 bit		+RE ₁ 47–32 bit
	+RE ₁ 31–16 bit		+RE ₁ 15–0 bit
7028	+RE ₂ 63–48 bit	7029	+RE ₂ 47–32 bit
7030	+RE ₂ 31–16 bit	7031	+RE ₂ 15–0 bit
7032	+RE ₃ 63–48 bit	7033	+RE ₃ 47–32 bit
7034	+RE ₃ 31–16 bit	7035	+RE ₃ 15–0 bit
7036	-RE₁ 63–48 bit	7037	-RE ₁ 47–32 bit
7038	-RE ₁ 31–16 bit	7039	-RE₁ 15–0 bit
7040	-RE ₂ 63–48 bit	7041	-RE ₂ 47–32 bit
7042	-RE ₂ 31–16 bit	7043	-RE ₂ 15–0 bit
7044	-RE ₃ 63–48 bit	7045	-RE ₃ 47–32 bit
7046	-RE ₃ 31–16 bit	7047	-RE ₃ 15–0 bit
7048	∑+E 63–48 bit	7049	∑+E47–32 bit
7050	$\Sigma + E 31 - 16$ bit	7051	Σ +E 15–0 bit
7052	∑-E 63–48 bit	7053	∑-E 47–32 bit
7054	∑-E 31–16 bit	7055	∑-E 15–0 bit
7056	∑+RE 63–48 bit	7057	∑+RE 47–32 bit
7058	∑+RE 31–16 bit	7059	∑+RE 15–0 bit
7060	∑-RE 63–48 bit	7061	∑-RE 47–32 bit
7062	∑-RE 31–16 bit	7063	∑-RE 15–0 bit

Energies (MWh, MVARh)

	Content	MB	Contont
addr.			Content
	+E ₁ 63–48 bit	addr.	
	•		$+E_1 47 - 32 \text{ bit}$
	+E ₁ 31–16 bit	1	$+E_1 15-0 \text{ bit}$
	+E ₂ 63–48 bit		+E ₂ 47–32 bit
	+E ₂ 31–16 bit		+E ₂ 15–0 bit
	$+E_3 63-48 \text{ bit}$		$+E_3 47 - 32 \text{ bit}$
	$+E_3 31-16 \text{ bit}$		$+E_3$ 15–0 bit
	-E ₁ 63–48 bit		-E ₁ 47–32 bit
	-E ₁ 31–16 bit		-E ₁ 15–0 bit
	-E ₂ 63–48 bit		-E ₂ 47–32 bit
	-E ₂ 31–16 bit	7119	-E ₂ 15–0 bit
7120	-E ₃ 63–48 bit	7121	-E ₃ 47–32 bit
7122	-E ₃ 31–16 bit	7123	-E ₃ 15–0 bit
7124	+RE ₁ 63–48 bit	7125	+RE ₁ 47–32 bit
7126	+RE ₁ 31–16 bit	7127	+RE₁ 15–0 bit
7128	+RE ₂ 63–48 bit	7129	+RE ₂ 47–32 bit
7130	+RE ₂ 31–16 bit	7131	+RE ₂ 15–0 bit
7132	+RE ₃ 63–48 bit	7133	+RE ₃ 47–32 bit
7134	+RE ₃ 31–16 bit	7135	+RE ₃ 15–0 bit
7136	-RE ₁ 63–48 bit	7137	-RE ₁ 47–32 bit
-	-RE ₁ 31–16 bit		-RE ₁ 15–0 bit
	-RE ₂ 63–48 bit	1	-RE ₂ 47–32 bit
	-RE ₂ 31–16 bit	-	-RE ₂ 15–0 bit
	-RE ₃ 63–48 bit		-RE ₃ 47–32 bit
	-RE ₃ 31–16 bit		-RE ₃ 15–0 bit
	∑+E 63–48 bit		∑+E47–32 bit
	Σ +E 31–16 bit	1	Σ+E 15–0 bit
	Σ-E 63–48 bit		Σ -E 47–32 bit
	Σ -E 31–16 bit	1	Σ -E 15–0 bit
-	Σ +RE 63–48 bit	7157	Σ +RE 47–32 bit
	Σ +RE 31–16 bit	7159	Σ +RE 15–0 bit
	Σ -RE 63–48 bit	7161	Σ -RE 47–32 bit
	Σ -RE 31–16 bit	7163	Σ -RE 15–0 bit
1102		1103	

Energies (GWh, GVARh)

-	Content	MB	Content
addr.		addr.	
	+E₁ 63–48 bit		+E ₁ 47–32 bit
	+E ₁ 31–16 bit	1	+E ₁ 15–0 bit
	+E ₂ 63–48 bit	7205	+E ₂ 47–32 bit
7206	+E ₂ 31–16 bit	7207	+E ₂ 15–0 bit
7208	+E ₃ 63–48 bit	7209	+E ₃ 47–32 bit
7210	+E ₃ 31–16 bit	7211	+E ₃ 15–0 bit
7212	-RE ₁ 63–48 bit	7213	-RE ₁ 47–32 bit
7214	-RE ₁ 31–16 bit	7215	-RE₁ 15–0 bit
7216	-RE ₂ 63–48 bit	7217	-RE ₂ 47–32 bit
7218	-RE ₂ 31–16 bit	7219	-RE ₂ 15–0 bit
7220	-RE ₃ 63–48 bit	7221	-RE ₃ 47–32 bit
7222	-RE ₃ 31–16 bit	7223	-RE ₃ 15–0 bit
7224	+RE ₁ 63–48 bit	7225	+RE ₁ 47–32 bit
7226	+RE ₁ 31–16 bit	7227	+RE ₁ 15–0 bit
7228	+RE ₂ 63–48 bit	7229	+RE ₂ 47–32 bit
7230	+RE ₂ 31–16 bit	7231	+RE ₂ 15–0 bit
7232	+RE ₃ 63–48 bit	7233	+RE ₃ 47–32 bit
7234	+RE ₃ 31–16 bit	7235	+RE ₃ 15–0 bit
7236	-RE ₁ 63–48 bit	7237	-RE ₁ 47–32 bit
7238	-RE ₁ 31–16 bit	7239	-RE₁ 15–0 bit
7240	-RE ₂ 63–48 bit	7241	-RE ₂ 47–32 bit
7242	-RE ₂ 31–16 bit	7243	-RE ₂ 15–0 bit
7244	-RE ₃ 63–48 bit	7245	-RE ₃ 47–32 bit
7246	-RE ₃ 31–16 bit	7247	-RE ₃ 15–0 bit
	∑+E 63–48 bit		∑+E47–32 bit
7250	∑+E 31–16 bit	7251	∑+E 15–0 bit
7252	∑-E 63–48 bit	7253	∑-E 47–32 bit
7254	∑-E 31–16 bit	7255	∑-E 15–0 bit
7256	∑+RE 63–48 bit	7257	∑+RE 47–32 bit
7258	∑+RE 31–16 bit	7259	∑+RE 15–0 bit
7260	∑-RE 63–48 bit	7261	∑-RE 47–32 bit
7262	∑-RE 31–16 bit	7263	∑-RE 15–0 bit

Energies (kWh, kVARh) (32 bit!)

MB Content	MB Content
addr.	addr.
7300 +E ₁ 31–16 bit	7301 +E ₁ 15–0 bit
7302 +E ₂ 31–16 bit	7303 +E ₂ 15–0 bit
7304 +E ₃ 31–16 bit	7305 +E ₃ 15–0 bit
7306 - E ₁ 31–16 bit	7307 -E ₁ 15–0 bit
7308 - E ₂ 31–16 bit	7309 -E ₂ 15–0 bit
7310-E ₃ 31–16 bit	7311 -E ₃ 15–0 bit
7312 +RE ₁ 31–16 bit	7313 +RE ₁ 15–0 bit
7314 +RE ₂ 31–16 bit	7315 +RE ₂ 15–0 bit
7316 +RE ₃ 31–16 bit	7317 +RE ₃ 15–0 bit
7318-RE ₁ 31–16 bit	7319 -RE ₁ 15–0 bit
7320 -RE ₂ 31–16 bit	7321 -RE ₂ 15–0 bit
7322-RE ₃ 31–16 bit	7323 -RE ₃ 15–0 bit
7324 ∑+E 31–16 bit	7325 ∑+E 15–0 bit
7326 ∑-E 31–16 bit	7327 ∑-E 15–0 bit
7328 ∑+RE 31–16 bit	7329 ∑+RE 15–0 bit
7330 ∑- RE 31–16 bit	7331 ∑- RE 15–0 bit

Energies (MWh, MVARh) (32 bit!)

MB Content	MB	Content
addr.	addr.	
7400 +E ₁ 31–16 bit	7401	+E ₁ 15–0 bit
7402 +E ₂ 31–16 bit	7403	+E ₂ 15–0 bit
7404 +E ₃ 31–16 bit	7405	+E ₃ 15–0 bit
7406-E ₁ 31–16 bit	7407	-E ₁ 15–0 bit
7408 - E ₂ 31–16 bit	7409	-E ₂ 15–0 bit
7410-E ₃ 31–16 bit	7411	-E ₃ 15–0 bit
7412 +RE ₁ 31–16 bit	7413	+RE ₁ 15–0 bit
7414 +RE ₂ 31–16 bit	7415	+RE ₂ 15–0 bit
7416 +RE ₃ 31–16 bit	7417	+RE ₃ 15–0 bit
7418-RE ₁ 31–16 bit	7419	-RE ₁ 15–0 bit
7420 -RE ₂ 31–16 bit	7421	-RE ₂ 15–0 bit
7422-RE ₃ 31–16 bit	7423	-RE ₃ 15–0 bit
7424 ∑+E 31–16 bit	7425	∑+E 15–0 bit
7426 ∑ -E 31–16 bit	7427	∑-E 15–0 bit
7428 ∑+E 31–16 bit	7429	∑+RE 15–0 bit
7430 ∑-E 31–16 bit	7431	∑-RE 15–0 bit

Energies (GWh, GVARh) (32 bit!)

MB	Tartalom	MB	Tartalom
addr		addr	
	+E₁ 31–16 bit	7501	+E₁ 15–0 bit
7502	+E ₂ 31–16 bit	7503	+E ₂ 15–0 bit
7504	+E ₃ 31–16 bit	7505	+E ₃ 15–0 bit
7506	-E ₁ 31–16 bit	7507	-E ₁ 15–0 bit
7508	-E ₂ 31–16 bit	7509	-E ₂ 15–0 bit
7510	-E ₃ 31–16 bit	7511	-E ₃ 15–0 bit
7512	+RE ₁ 31–16 bit	7513	+RE ₁ 15–0 bit
7514	+RE ₂ 31–16 bit	7515	+RE ₂ 15–0 bit
7516	+RE₃ 31–16 bit	7517	+RE ₃ 15–0 bit
7518	-RE ₁ 31–16 bit	7519	-RE₁ 15–0 bit
7520	-RE ₂ 31–16 bit	7521	-RE ₂ 15–0 bit
7522	-RE₃ 31–16 bit	7523	-RE ₃ 15–0 bit
7524	∑+E 31–16 bit	7525	∑+E 15–0 bit
7526	∑-E 31–16 bit	7527	∑-E 15–0 bit
7528	∑+RE 31–16 bit	7529	∑+RE 15–0 bit
7530	∑-RE 31–16 bit	7531	∑-RE 15–0 bit

Function	7.5. Error LED settings The error indicator LED is set when the error indication is enabled in <u>7.5 Error LED setting</u> menu. The errors are stored in the memory, and can be viewed in <u>5. Errors</u> menu.
	In <u>5. Errors</u> menu contain errors states (0 – not occured, 1 - occured). Errors are cleared after reset.
Sequence of operations	 Log in the <u>7. Configuration menu</u>. Choose the <u>7.5. Error LED setting menu with the</u> 1/ buttons, and press ENTER button. In the apperaring menu select and mark or unmark the error you want to observe, with the 1// 1/ SEL button. Attention! You can mark more then one error! If you want to escape from this menu, press the OK button.
	5. If you want to escape from <u>7. Configuration</u> menu, press the BACK button.

Error messages

Error	Explanation:
number:	
1	L1 voltage dip
2	L2 voltage dip
3	L3 voltage dip
4	L1 voltage interrupt
5	L2 voltage interrupt
6	L3 voltage interrupt
7	L1 voltage swell
8	L2 voltage swell
9	L3 voltage swell
10	L1 overload
11	L2 overload
12	L3 overload
13	Phase sequence error
14	Frequency out of range
15	Q out of range
16	Modbus communication error
17	Analogue output error
18	Demand overrun
19	Unexpeted syncron signal
20	Missed syncron signal

Error messages

Error	Explanation:
number:	
21	Calibration values are demaged
22	User settings are demaged
23	Saved energies are demaged

Voltage dip:

The voltage value is less than 90% of nominal value. (Not used the EN50160 standart)

Voltage interrupt:

The voltage value is less than 10% of nominal value. (Not used the EN50160 standart)

Voltage swell:

The voltage value is more than 110% of nominal value. 110% t. (Not used the EN50160 standart)

Overload:

The measured current value is more than 120% of nominal current value.

Phase sequence error:

The L1 L2 L3 phases follow each other unlike the positive sequnce (-120°, -240°)

7.6. Clear errors

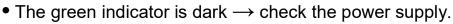
Here can the Supervisor delete the errors.

Sequence of operations 1. Log in the 7. Configurations menu

- 2. Choose the 7.6. Clear errors menu of the
- <u>7. Configurations</u> menu with 1 + 1 = 1 buttons, and press the ENTE switch.
- 3. Press the CLEAR switch
- 4. Press the **BACK** switch to exit from <u>7.6. Clear errors</u> submenu.

Function

Function	7.7. Clear the Energyregisters Here can the Supervisor delete the energy regesiters.
\triangle	You can not write back the previous value!
Sequence of operations	 Log in the <u>7. Configurations menu</u> Choose the <u>7.7. Clear energy menu of the</u> <u>7. Configurations menu with</u> ① / ③ buttons, and press the <u>ENTE</u> switch. Select the <u>Energy</u> you want to delet with ① / ④ buttons, and press the <u>ENTE</u> switch Press the <u>CLEAR</u> switch Press the <u>VES</u> switch confirm to delete. Press the <u>BACK</u> switch to exit from <u>7.7 Clear energy submenu</u>.
Function	7.8. Change the password Here can the Supervisor change the password. Default: 0
Sequence of operations	 Log in the <u>7. Configurations</u> menu Choose the <u>7.8. User password</u> menu of the <u>7. Configurations</u> menu with 1 ↓ buttons, and press the <u>ENTE</u> switch. Type the new password with help ⇒, -, + switches, and press the OK switch to accept the value. The device has to exit from <u>7.8. User password</u> submenu.
	Warning! Do not forget your master password, because if it goes to <u>7. Configuration</u> submenu, you can only enter with the new password


20201120-V1

8. Fault rectification

8.1. Fault finding

The fault finding must be carried out by trained and authorized personnel only!

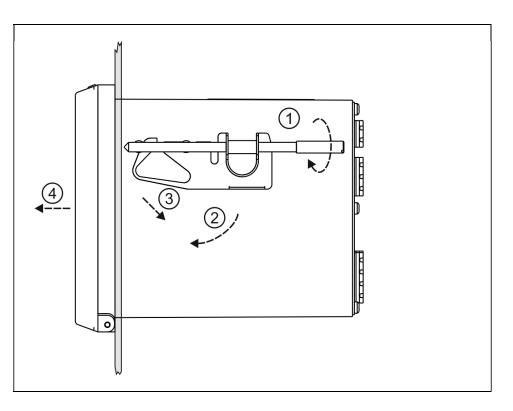
If the supply voltage is OK: the instrument is defective.

• There is no output signal \rightarrow check the device connected to the input.

When the result of fault finding is that the PQRM5300 33 Ux Ix xx xx (PS) is defective call the manufacturer service department.

8.2. Repairing

There is no user repairable part inside the instrument. In accordance with Point 2.1.: For safety and warranty reasons, any internal work on the instrument must be carried out by DATCON personnel.


9. Dismounting

9.1. Dismounting procedure

Before dismounting take note the warnings written in Chapter 5.1.

The following figure shows the dismounting procedures:

Dismounting from the rail

The dismounting procedure needs a screwdriver for slotted screws.

1. Switch off the power supply of the instrument.

2. Remove all cable.

3. Loosen the fixing screw (anticlockwise) according the figure. **Step (1)**.

4. Push the end of the mouting clamp screw forward, and then rotate it downward to release it from the rear retaining rivet. **Step (2)**..

5. Remove the mounting clamp from the front rivet according the figure **Step (3)**.

6. Do the above procedure with the other mounting clamp also (**Step (1) - Step (4)**).

7. Pull out the instrument from the panel.

9.2. Disposal

According with the concerning EU directive, the manufacturer undertakes the disposal of the instrument that are manufactured by it and intended to be destroyed. Please deliver it in contamination-free condition to the site of the Manufacturer or to a specialized recycling company.

10. Appendix

10.1. Technical specification

Safety data:

The connection terminals of the inputs, the outputs and the supply voltages are galvanic isolated from each other. The isolation of the measuring inputs and the power supply input are in accordance with the standard MSZ EN 61010-1, taking into consideration the following: Pollution level: 2 CAT III Measurement category: Overcurrent protection in installation: 4 A Input parameters: $U_{12}, \, U_{23}, \, U_{31}, \, U_{L1}, \, U_{L2}, \, U_{L3}, \, I_{L1}, \, I_{L2}, \, I_{L3},$ Measured power network quantities: P_{L1} , P_{L1} , P_{L3} , Q_{L1} , Q_{L2} , Q_{L3} , S_{L1} , S_{L2} , S_{L3} , $PF_{L1}, PF_{L2}, PF_{L3}, \phi_{L1}, \phi_{L2}, \phi_{L3},$ ΣΡ, ΣQ, ΣS, ΣPF, Σφ, f_1 , f_2 , f_3 ; $ρ_{12}$, $ρ_{13}$ $+E_{L1}, +E_{L2}, +E_{L3}, -E_{L1}, -E_{L2}, -E_{L3},$ +RE_{L1}, +RE_{L2}, +RE_{L3}, -RE_{L1}, -RE_{L2}, -RE_{L3}, Σ +E, Σ -E, Σ +RE, Σ -RE, THD U₁₁, THD U₁₂, THD U₁₃, THD I_{L1}, THD I_{L2}, THD I_{L3}, $h_{UL1 0} - h_{UL1 19}, h_{UL2 0} - h_{UL2 19}, h_{UL3 0} - h_{UL3 19},$ $h_{IL1 0} - h_{IL1 19}, h_{IL2 0} - h_{IL2 19}, h_{IL3 0} - h_{IL3 19}$ 0-125 V AC / 0-250 V AC (none isolated) Input voltage ranges: (specified at ordering) Input current ranges: I_{IN} max. (1s) I_{IN} max. [A] Type **Ι**_{IN} [**A**] [A] 11 0–1 2 x I_{BF} 20 15 0–5 2 x IBF 100 (specified at ordering) Input current ranges: Galvanic isolated, R < 20 mOhm Current measure input Voltage measure input Resistordivider. R = 1.6 MOhm Consumption of the input: 0.5 VA (max.) Frequency range: 50 Hz (35Hz - 100Hz) **Response time:** Min. 100ms Error $(23 \degree C \pm 2 \degree C)$: 0.2% Temperature coefficient: 25 ppm / °C (max.)

Output parameters:

The device has one analogue option or one communication option at same time.

MODBUS communication interface (optional):

RS485 Interface type: Baud rate:

Parity: Protocol: Address: Possible commands:

Termination:

Ethernet

Interface type: Protocol: Device address: Commands:

Settings:

Analogue outputs (optional)

Output type:

Ranges:

Burden: Refreshing time: Setting time: (10-90%) Overcurrent: Error: Burden resistance effect:

Pulse outputs (optional):

Output type: Rating: RS485, galvanic isolated 300 / 600 / 1200 / 2400 / 4800 / 9600 / 14400 / 19200 / 32800 / 56000 / 57600 / 115200 Baud even / odd / none MODBUS RTU / ASCII slave 1-240 3 (register read) 16 (register write) External (not part of device)

Ethernet 10/100 Base-T, galvanic isolated MODBUS TCP/IP, server 1 3 (register read) 16 (register write) IP address, Default gateway, Subnetwork mask Static IP address (DHCP not supported)

2 galvanic isolated active current outputs (configurable, scalable) 0-20 mA / 4-20 mA or 0-5 mA / 1-5 mA 500 ohm (max.) same as the measuring time (100 ms) Max. 60 ms 20.8 mA <4 uA (23 °C ±2 °C), <40 uA (-20 - 60 °C) practically zero

2 galvanic isolated transistor 30 V, 50 mA

PQRM5300 33 Ux Ix xx xx (PS)

Power supply:	
Supply voltage:	24 VDC ±10% PQRM5300 33 Ux Ix xx xx vagy 230 V AC/DC ±10% PQRM5300 33 Ux Ix xx xx PS
Power consumption:	1.5 VA / 1 W
Galvanic isolation:	
Operating isolation voltage:	250 Veff (between measuring inputs and power supply input)
Test /Type voltage:	4200 VDC (1 min.) (between measuring inputs and power supply input) 500 VDC (between output-power supply terminals)
Capacity:	20 pF (between input, output, power supply terminals)
Protection class:	II. reinforced insulation
Leakage current:	0,005 mA (between input, output, power supply terminals)
Ambient conditions:	

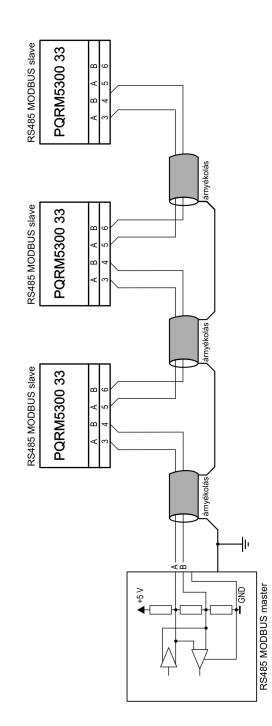
Operating temperature range: Storage temperature range: Relative humidity: Place of installation: 0-60 °C 0-70 °C 90 % (max., non condensing) cabinet

Electromagnetic compatibility (EMC)

In accordance with the standard MSZ EN	61326-1			
Emission: In accordance with the standard MSZ EN 61326-1				
Conducted:	MSZ EN 55011			
	Limits for Class A equipments			
Radiated:	MSZ EN 55011			
	Limits for Class A equipments			
ESD:	4 kV/8 kV contact / air	-A- criteria		
BURST:				
- Power measure input	4 kV (5/50 ns, 5KHz)	-A- criteria		
- Main supply input (PS)	2 kV (5/50 ns, 5KHz)	-A- criteria		
- Analogue outputs	1 kV (5/50 ns, 5KHz)	-A- criteria		
- Digital outputs	1 kV (5/50 ns, 5KHz)	-A- criteria		
SURGE:				
- Power measure input	4 kV (CATIII, 250V)	-B- criteria		
- Main supply input (PS)	2 kV (line to ground)	-B- criteria		
- Analogue outputs	1 kV (line to ground)	-B- criteria		
- Digital outputs	1 kV (line to ground)	-B- criteria		
Conducted RF immunity:	3 Veff	-A- criteria		
Conducted RF emission:	1 group, Class B			
Radiated RF immunity:	E =10 V/m	A- criteria		
Radiated RF emission:	1 group, Class B			

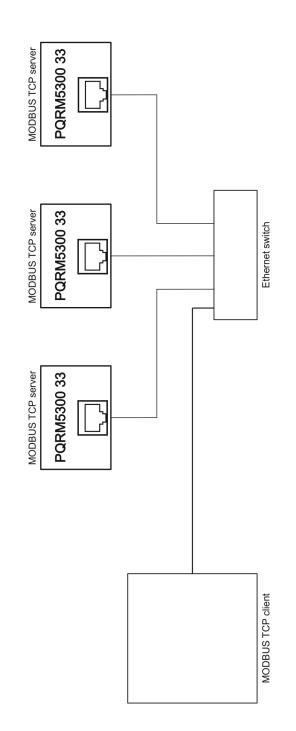
General data:

Housing: Connection: Connecting cable:


Dimensions:

Weight: Protection: panel instrument push-in direct connection 2.5 mm² (min.) 4.5 mm² (max.) 104 x 104 x 120 mm (width x height x depth) 0.5 kg maximum IP 50 (front), IP 20 (rear)

The Manufacturer maintains the right to change technical data.


ODATCON

10.2. MODBUS RS485 bus topology

10.3. Ethernet network topology

DATCON INDUSTRIAL MEASUREMENT

1148 Budapest, Fogarasi út 5. 27. ép. HUNGARY

Tel.: +(361) 460-1000 Fax: +(361) 460-1001 www.datcon.hu